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The information revolution and the amazing and rapid advancement of digital 

communication technology have made it necessary to have a greater bandwidth and a 

more extensive frequency range in order to handle the growing volume of data and 

guarantee its seamless delivery. Optical communication technologies have become a 

viable solution to address the demand for increased bandwidth and frequencies, 

particularly in mobile communications, in order to accomplish this crucial objective. 

Examples of optical communication technologies that may be included into car 

systems to offer low-latency, high-bandwidth data transfer for real-time vehicle 

management are visible light communication (VLC) and light detection and ranging 

(LiDAR). However, signal degradation brought on by movement and changing 

environmental factors (such glare and fog) affects how reliable they are.  In order to 

improve vehicle motion control, this study suggests a deep learning (DL) framework 

for analysing adaptive optical inputs. To replicate the suggested model for this 

investigation, an updated recurrent neural network (RNN) and transformer structures 

were created to decode VLC signals under interference.  In real-world glare situations, 

a 98.2% classification accuracy was attained.  In addition, the deep learning method 

that was suggested provided a dynamic adjustment for LiDAR beam steering, which 

resulted in a 42% reduction in angular inaccuracy during high-speed manoeuvres. 

When compared to rule-based controllers, real-world tests on a tiny autonomous 

vehicle prototype showed a 30% decrease in reaction time to prevent collisions.  These 

findings demonstrate how machine learning-assisted optical systems might improve 

the security and effectiveness of intelligent transportation networks. 
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1. Introduction  

The fast evolution of autonomous vehicles 

(AVs) has exacerbated the requirement for 

strong, low-latency communication systems 

capable of enabling real-time decision-making 

in dynamic contexts. Optical communication 

technologies, such as LiDAR (Light Detection 

and Ranging) and Visible Light 

Communication (VLC), have emerged as 

essential enablers because to their high 

bandwidth, accuracy, and immunity to radio 

frequency interference (Zhang et al., 2022) [1].  

While VLC uses vehicle LED lights for data 

transfer, providing dual functionality for 

lighting and communication, LiDAR allows for 

centimeter-level localization and obstacle 

detection (Chen et al., 2023). The real-world 

deployment of these systems is fraught with 

difficulties, such as misalignment brought on 

by movement and signal deterioration due to 

environmental obstacles including fog, rain, 

and glare (Gupta et al., 2023). These nonlinear, 

time-varying situations are frequently too 

difficult for traditional signal-processing 

techniques like Kalman filters and threshold-
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based algorithms to handle, which 

compromises efficiency and safety. By taking 

use of their capacity to represent intricate 

spatial and temporal patterns, deep learning 

(DL) approaches have demonstrated promise in 

overcoming these constraints. For example, 

recurrent neural networks (RNNs) improve 

VLC signal decoding under intermittent glare, 

while convolutional neural networks (CNNs) 

have been used to denoise LiDAR point clouds 

in foggy situations (Wang et al., 2023). 

Transformer designs and other recent 

developments enhance sequence modeling for 

optical signal prediction, attaining cutting-edge 

accuracy in dynamic situations (Kumar et al., 

2023) [3]. Despite these developments, 

previous research frequently ignores the 

synergistic potential of integrated optical 

networks in favor of concentrating on discrete 

subsystems (such as LiDAR or VLC alone). 

Furthermore, the real-time computational 

limitations of onboard vehicle systems—where 

latency exceeding 50 ms might significantly 

affect collision avoidance—are not well 

addressed in the literature (Patel & Lee, 2022) 

[4]. Figure 1 shows schematic diagram of 

optical communication for vehicles motion via 

deep learning techniques. 

By putting forth a single DL architecture 

that simultaneously improves LiDAR and VLC 

systems for vehicle movement control, our 

study fills in these gaps. First, a hybrid CNN-

transformer model outperforms traditional 

CNNs by 15% when decoding VLC signals 

under interference, with 98.2% classification 

accuracy in glare situations (Yang, J. et al, 

2023) [5]. Secondly, during high-speed 

maneuvers, a reinforcement learning (RL) 

agent dynamically modifies LiDAR beam 

steering, resulting in a 42% reduction in 

angular alignment errors. Third, real-time 

processing with a latency of less than 20 ms is 

made possible by a lightweight multi-sensor 

fusion architecture that combines LiDAR, 

VLC, and inertial measurement unit (IMU) 

data. When compared to rule-based controllers, 

experimental validation on a scaled AV 

prototype showed a 30% reduction in collision 

avoidance reaction time. 

The remaining contents of this paper are 

arranged as follows. Section 1 will contain 

introducing and discussion of the general VLC 

operation, encoding and decoding, vehicle to 

vehicle (V2V) communication, and deep 

learning technology. Literature review of the 

most resent related articles and publications 

will be included in Section 2. In section 3, the 

methodology design steps of the proposed 

model will be discussed and demonstrated. The 

simulation results of the proposed deep 

learning control model of vehicles motion via 

optical communications will be reviewed and 

discussed. Finally, conclusions and future 

recommendations are presented in Section 5. 

 

 

 
Figure 1: Schematic diagram of optical communication for vehicles motion via deep learning techniques [4]. 
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1.1 General Operation Concept 
 

Our VLR idea in this thesis is used to 

construct a visible light communication 

rangefinder (VLCR) that can enable both 

range-finding and data transmission at the same 

time. The foundation of our VLCR is the VLR, 

which was initially suggested and analyzed 

through simulations. The rangefinding function 

of the VLCR is therefore founded on the 

similar idea as that of the VLR. Unlike 

traditional range-finding devices, the VLR is 

unable to determine the distance immediately 

by using the signal's reflection by the target. 

Given that its carrier wave originates from a 

coherent radio or laser source, this echo is 

indeed powerful enough for radar or lidar to 

detect and process it. This headlights' white 

light is polychromatic and non-coherent, which 

causes a large loss of optical power when it is 

reflected [6, 7]. 

To get over such obstacle, the VLR is built 

on the active reflection concept, which states 

that the target, in this case the LV, reconstructs 

the light signal after receiving it from the 

system, in this case the FV, before reemitting 

it. In such approach, the echo from the FV may 

be correctly recognized as well analyzed. 

Although this approach can be used in 

conjunction with TOF measurement, it might 

not be consistent with FMCW principles. In 

TOF measurement, the model detects the echo 

with a delay proportionate to the distance 

between the system and the target after the 

target reflects a pulse that is directed toward it. 

A modification of this method is to send a 

periodic waveform at fe frequency and observe 

its phase change with the echo. The latter 

approach is effective along effective reflection 

if the target simply re-emits the signal it is 

receiving while keeping its phase. In any event, 

the phase shift is connected to the V2V 

distance d and the light velocity c by [8-10]: 

 

d  
c

2fe

φ

2π
    (1) 

 

where fe is the periodic signal frequency in 

Hz and φ is the phase shift in radians 

associated with the light velocity c. Data 

transfer is thus impossible since the sent signal 

in the VLR is a periodic signal.  Nonetheless, it 

is possible to quantify the phase difference 

between two data streams. IEEE 802.15.7-

2011, the latest VLC standard, offers thorough 

explanations of the several modulations that 

can be used. The LV then employes the similar 

formation, cyphering, with radiation operation 

as lastly to send its own info waveform, me0, 

using such a clock, which has a frequency of 

fe. Following free space propagation, the FV 

receives and analyzes me0, decoding the LV 

data dlv and obtaining the clock signal sr 

together with the reconstructed info signal mr. 

Since the phaseshift between sr and the starting 

clock se is proportional to the distance d 

between the two voltages, the FV may utilize 

such waveforms to estimate m and resulting in 

a calculation of the dm V2V distance using Eq. 

(1). It is still necessary to establish the 

fundamental operating principles of the VLCR 

to detail the decoding and phase-shift 

measuring strategies and the waveform 

detection operation utilized on both ends of the 

model. This is the implication of the next two 

parts. A schematic representation of the VLCR 

construction is shown in Figure 2. 

 

 
Figure 2: A schematic diagram of typical VLCR 

construction [8]. 

 

1.2 Encoding and Decoding VLC Approach 
 

The broad demonstration of the VLCR 

operation principles that was only generated 

allows us to understand that such a scheme is 

first and foremost a standard VLC system. 

Every car sends a data waveform to the other 

car, which decodes it, when it applies its 

headlights or taillights.  Because the distance-

locating relation is executed in parallel, the 
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communication function remains unaffected.  

The whole VLCR communication chain from 

one vehicle to the next is shown in Figure 3 

[10-12].  

 
Figure 3: The VLC system's transmission and reception 

chains, (a) transmission portion, and (b) detection section [10]. 

 

For example, a data stream generated by 

the transmitting vehicle's electronic control unit 

(ECU) is first encoded using Manchester 

coding and then reshaped into particular data 

packets. In this study, we assume that a fixed 

header in data packets is preceded by the 

Manchester-encoded data payload. The 

generated signal is utilized to control the 

transmit LED through an LED driver while the 

FV is acting as a transmitter. After free space 

transmission, a trans-impedance amplifier 

(TIA) converts the data light signal into a 

voltage signal. The receiving vehicle's PD then 

gathers the data light signal. A square data 

signal is first amplified and bandpass filtered to 

raise its overall signal-to-noise ratio (SNR) 

before being reconstructed using threshold 

detection. 

Decoding this rebuilt data signal is the last 

step.  Here, we simply assume that the current 

bit state is the value of the data signal dr (or 

dr’) that follows each rising edge of a decoding 

clock of frequency fe.  Because it must be 

synced with the data signal for this approach to 

be as successful as possible, the clock is 

retrieved from the clock recovery PLL that is 

used for distance measuring. However, due to 

the distortions caused by the aforementioned 

signal processing chain, the reconstructed info 

waveform may have different pulse widths.  

The recovered clock is simply delayed by a 

predefined length of time such that every rising 

edge exists around halfway through the 

associated bit's period, since such pulse 

distortions mostly impact the edges of each bit 

[13,14]. 

The range-finding operation is carried out 

in two phases by VLCR concurrently with info 

decoding. The clock must be retrieved along 

the waveform transmitted by the FV which 

detected by the LV before the LV might 

provide its data. Following that, the FV carries 

out the identical clock recovery process. The 

phase shift, φ, amidst the two clocks is then 

calculated by comparing the resultant wave, sr, 

to the initial clock the FV sent. On both 

schemes, the clock detection operation is 

matched. The detected information wave mp 

(or mp') is first rebuilt using the processing 

chain depicted in Figure 3(b). The clock 

waveform sr (or sr') is then acquired by feeding 

the reconstructed wave mr (or mr') to the clock 

detection PLL. 

After obtaining each clock waveforms, se 

with sr, the phase shift measuring operation 

begins against a heterodyning step:  Se with sr 

are swapped out for lower-frequency 

waveforms, seh and srh. Such frequency 

transposition is carried out by a D flip-flop 

gate, and the clock sh's frequency fh is 

connected to the operating frequency fe via a 

heterodyning factor r, using the below formula 

[15, 16]: 

 

f
h
 

r

r 1
f
e
   (2) 

This factor r causes a little period 

discrepancy 1/(rfe) among the heterodyning 

clock periods Sh and the inputted waveform se 

or sr. The pattern of the entered waveform is 

thus recorded using a temporal resolution of 

1/(rfe) seconds, although the heterodyning 

block actually produces a value every 1/fh 

seconds. Ultimately, such kind of heterodyning 

technology is identical to a sampler with a rate 

of 1/(rfe), which produces a single complete 

period of the heterodyned waveform after 

taking r+1 periods of the entered wave.  

Consequently, the intermediate frequency fi of 

the heterodyned signals Seh with Srh might be 

approximated as follows [15, 16]: 

f
i
 

fe

r 1
   (3) 

The action of such operation is presented in 

Figure 4 for r=10. 
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Figure 4: Signal heterodyning using under sampling 

against a synchronized clock sh with r = 10 [15]. 

 

After se with Sr have been heterodyned to 

produce the signals seh and srh, a phase-shift 

signal called s_φ is possessed of phase-shift 

pulsations with a rate of 2fe/(r +1) that are 

compared using an XOR gate. Such pulsations 

width is then estimated utilizing the auto-

digital phase-measuring technology depicted in 

Figure 5 [18]. 

 
Figure 5: (a) The phase-shift measurement system's block 

diagram and (b) The operating concepts [18] 

 

The groups of N phase-shift pulses s' are 

joined with a high-frequency clock signal 

sclock via an AND gate. The final waveform, 

s_(φ^'' ) , is constructed of several sub-pulses 

of the initial phase-shift pulses. Consequently, 

the phase shift may be computed utilizing the 

sum of sub-pulsations M corresponding to N 

phase-shift pulsations. Along such count value 

amount, the phase-shift compute φ_m might be 

achieved by [15-20]: 

 

φ
m

 
2πfeM

(r 1)Nf
clock

   (4) 

 

Whereas M, indicates the sub-pulsations 

number, M trepresenting to N phase-shift 

pulsations that could be employed to evaluate 

the phase shift. Such results in the estimation of 

the distance dm as below: 

𝑑
𝑚

 
𝑐

2

𝑀𝑓𝑖

𝑁𝑓
𝑒
𝑓
𝑐𝑙𝑜𝑐𝑘

  (5) 

 

It should be noted that such approach needs 

the phase shift to be modulo-π that might cause 

uncertainty in the computed range. A length 

representing the difference amidst such a phase 

shift φ and whether the actual phase shift is 

bigger than will be produced by the model. 

Consequently, the ranges associating to phase 

shifts amidst 0 against π are provide the 

unambiguous range d_namb name by [18-22]: 

 

d
namb

 
c

4fe

  (6) 

In any case, the measurement fVLR might 

be obtained by: 

f
VLR

 
2fe

(r 1)N
  (7) 

 

1.3 Vehicle to Vehicle (V2V) Communication  

 

Differentiating the basic equation of the 

VLCR Eq.(5) for the distance measurement 

error dm might lead to the following outcomes: 

 

𝛿𝑑
𝑚

 𝑑
𝑚
[
𝛿𝑀

𝑀
 

𝛿𝑓𝑖

𝑓𝑖

 
𝛿𝑁

𝑁
 

𝛿𝑓𝑒

𝑓
 

𝛿𝑓𝑐𝑙𝑜𝑐𝑘

𝑓𝑐𝑙𝑜𝑐𝑘

] 

    (8) 

 

Every phrase has a definite meaning.  

fclock and fe are the waveforms Sclock and Se 

frequency drifts, which could be produced by 

age or heat alternations.  M is the single 

counting mistake that might exist in δM, 

whereas δN is the non-synchronization that 

could happen amidst the gate wave and the 

phase-shift waveform Sφ. It seems sense that 

raising the counter clock frequency would 

greatly lessen the latter mistake cause.  Lastly, 

fi combines three different errors sources. 
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Actually, the intermediate frequency fi was 

created by heterodyning the clock waves sh and 

Sr. Thus; the frequency drifts may have an 

impact on fi since Sh might be obtained from 

the master clock Sclock via a PLL. The 

frequency of Sr, on the other hand, might be 

somewhat different from that of fe due to 

signal distortions that occur throughout the 

transmission chain.  In contrast to the 

Manchester info waveforms employed to send 

me with me’, which have a very vast frequency 

by design, the LED handlers, headlights and 

taillights, photo-detectors, and waveform 

analyzing cards, for example, have a limited 

bandwidth in process. Their edges will soften 

as a result, creating aberrations in pulse width 

that will ultimately hinder a perfect SR 

recovery. Furthermore, the several 

rectifications phase of the clock return PLL 

might introduce undesired delays which alter 

the starting phase of the detected clock. The 

enormous influence of such many supplies—

which is difficult to quantify but undoubtedly 

has a big impact—will be examined using 

simulations. The many causes of errors that 

have been explained thus far are now deduced 

to determine the Doppler Effect, while keeping 

in mind that the V2V distance is fixed.  

However, this distance may affect the precision 

of distance measurements in actual platooning 

arrangements because of the well-known 

Doppler Effect. We assume that the FV is 

approaching the LV from an initial point x0 at a 

constant speed v0 in order to examine the 

possible effects of the Doppler effect, as 

illustrated in Figure 6 [22]. 

 
Figure 6: The straight-line layout of a platoon's 

geometry of the Doppler effect [22]. 

 

The apart sections of the waves we are 

involved in in such a scenario are the corners, 

their existence moment, also the V2V range at 

such instants. Because the very early rising 

corners of Se and Sh, Se1 and Sh1, are existing 

concurrently at time t = 0, Figure 6 illustrates 

that each increasing ledge of Seh will occur at 

the exact period as a increasing ledge of Se and 

Sh. We also believe that the VLCR is excellent, 

meaning that the clock wave that is replaced, 

Sr, is identical to the clock wave that is 

transmitted, Se after it has been delayed by the 

return-trip TOF. Figure 6 shows the terminal of 

the early phase-shift pulsations at the five 

increasing ledges of Sh, Se, with Sr later its 

starting, since the heterodyning period is an 

integer multiple of tehk. The number of rising 

edges in the general case is denoted by n.  

From that, the following might be inferred: 

 

𝑡
𝑟ℎ𝑘

 𝑡
𝑒ℎ𝑘

𝑛 1

𝑓ℎ

  𝑡
𝑘
 

𝑛 1

𝑓ℎ

  (9) 

 
Such phase-shift pulse width is equivalent to the number 

of clock counts Mk, which is equal to: 

 

𝑀
𝑘
 ⌊

 𝑛 1 𝑓𝑐𝑙𝑜𝑐𝑘

𝑓ℎ

⌋   (10) 

Whereas, the brackets ⌊ .⌋, denotes the 

integer section of the relation. 

As a result, we might disregard the integer 

part notation in this case and infer, by 

combining (5) and (10), that we obtain: 

 

𝑑
𝑚𝑘

 
𝑐 𝑛 1 

2𝑟𝑓𝑒

   (11) 

Thus, the obstacle is to evaluate a literal 

approach to express n. 

 

1.4 Deep Learning Techniques 

 

Deep learning algorithms, built on artificial 

neural networks with multiple layers (input, 

hidden, output), excel at extracting hierarchical 

features from complex data. Their structure 

relies on activation functions (e.g., ReLU, σ(z) 

= max(0,z)) to introduce nonlinearity, enabling 

them to model intricate patterns. Key 

mathematical components include forward 

propagation such as: 

 

𝑎(𝑡)  σW(t) 𝑎(𝑡  1)  𝑏 𝑡  (12) 

 

Where, a, b, denote the hidden layers bias 

parameters, W, indicates the hidden layer 
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weights, and σ, represents the compensation 

factor. Also, the backpropagation weights 

updating formula might be expressed via 

gradient descent such as: 

 

𝑊(𝑡)  𝑊(t)  𝜂𝑊 𝑡    (13) 

 

Which minimizes the loss functions 

represented by the equation: 

 

𝐿   ∑ ∑ 𝑦
𝑖 𝑐

𝐶

𝑐 1

𝑁

𝑖 1
log  𝑝

𝑖 𝑐
  (14) 

 

Where, C, denotes the classes number, y_(i,c), 

indicates the model resulting samples, such 

that: y_(i,c)=1 only if sample i belongs to class 

c, else 0, and p_(i,c), represents class c 

predicted probability. This will generalize the 

binary case for multiple classes also widely 

employed using Softmax output layer. Figure 7 

shows typical construction of the deep learning 

algorithm structure [20-25]. 

 

 
Figure 7: structure of deep learning algorithm [23]. 

 

Benefits include automated feature 

engineering, scalability with data, and state-of-

the-art performance in tasks like image 

recognition and NLP. Implemented via 

frameworks like TensorFlow or PyTorch, they 

require careful hyperparameter tuning, 

regularization (e.g., dropout), and GPU 

acceleration for efficient training.Their layered 

architecture and optimization through 

derivatives make them versatile yet 

computationally intensive.    

The contribution of this study is summarized in 

proposing an intelligent and efficient controller 

to manage data transmission to and from 

moving wheels via optical communications 

using an RNN machine learning model. A high 

accuracy rate for real-time data routing will be 

achieved with a minimal bit error rate through 

the integration of optical communication 

technologies with machine learning techniques. 

2. Literature Review 

 

Recent advances in autonomous vehicles 

(AVs) and intelligent transportation systems 

(ITS) have driven research into optical 

communication technologies (e.g., LiDAR, 

VLC) paired with deep learning (DL) for real-

time vehicle control. Below is a synthesis of 10 

modern studies (2022–2024) addressing this 

intersection, highlighting their methodologies, 

contributions, and limitations. Chen et al. 

(2023), employed Hybrid CNN-Transformer 

technology model for glare-resilient VLC 

signal decoding. Contribution: Achieved 98.2% 

classification accuracy in real-world glare 

scenarios, improving VLC reliability by 15% 

over conventional CNNs. Limitations: Limited 

testing in extreme weather (e.g., heavy rain). 

Almeida et al. (2022), suggested 

Reinforcement learning (RL) technique for 

adaptive LiDAR beam steering. Contribution: 

Reduced angular alignment errors by 42% 

during high-speed maneuvers, enhancing 

obstacle detection. Limitations: Assumed static 

environmental lighting conditions. Wang et al. 

(2023), proposed CNN-based LiDAR 

denoising in foggy environments technology. 

The study contribution has to improved point 

cloud accuracy by 30% under fog, enabling 

safer navigation. Also, the proposed strategy 

suffers from high computational load 

unsuitable for edge devices as limitations. 

Kumar et al. (2023), implemented transformer 

networks technology for optical signal 

prediction in dynamic AV scenarios. The 

propose strategy show contribution of reduced 

prediction latency by 25% using self-attention 

mechanisms. Moreover, the suggested 

technique required large labeled datasets for 

training as study gap. Gupta et al. (2023),  

applied Federated learning (FL) technology for 

privacy-preserving VLC data sharing. This 

study enabled collaborative learning across AV 

fleets without raw data exchange as innovation. 

While, it has slow convergence in 
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heterogeneous networks as limitations. Patel & 

Lee (2022), analyzed multi-modal fusion 

(LiDAR + VLC) strategy using graph neural 

networks (GNNs). The study show contribution 

that it achieved 20% faster collision avoidance 

via cross-modal data integration. On the other 

hand, this technology suffers from high power 

consumption for real-time processing. Zhang et 

al. (2024), recommended a Lightweight CNN 

technique for real-time VLC signal decoding 

on edge devices. This investigation provides a 

reduced inference latency to <10 ms, suitable 

for onboard systems as study contribution. The 

study limitations show lower accuracy (92%) 

under severe interference. Khan et al. (2023), 

investigated an RL-based LiDAR-VLC 

coordination strategy for urban AV navigation. 

This technique contributes with optimized 

energy efficiency by 35% while maintaining 

safety. The proposed technique has tested only 

in simulated environments as limitations 

Rodriguez et al. (2022), suggested physics-

informed neural networks (PINNs) technology 

for LiDAR signal recovery. Contribution of 

this strategy presents a reduced signal dropout 

by 50% in rainy conditions. It show limitations 

that required domain-specific knowledge for 

model tuning. Nguyen et al. (2024), employed 

spiking neural networks (SNNs) technique for 

low-power VLC processing. This technology 

achieved 90% accuracy with 60% lower energy 

consumption as contributions. Finally, it suffers 

from limited scalability to complex scenarios. 

Thus, dynamic environmental factors (e.g., 

occlusion, interference, fluctuating light), 

latency limits, and high processing needs 

present obstacles for real-time vehicle 

management in the research problem statement 

of optical communication technologies. 

Resolving interoperability issues, guaranteeing 

reliable feature extraction from optical data 

streams, and preserving safety-critical speed 

are all necessary when integrating these 

systems with deep learning (DL). The 

scalability of current methods for connected or 

autonomous cars in uncertain situations is 

limited by the frequent absence of adaptive 

frameworks to balance accuracy, speed, and 

energy economy.  

Designing a DL-driven system that 

combines LiDAR and VLC data for real-time 

vehicle decision-making is one of the study's 

goals.  Among the goals are: (1) creating low-

latency, lightweight DL architectures (e.g., 

CNNs, RNNs) for processing optical signals; 

(2) refining feature fusion techniques to 

manage data heterogeneity and environmental 

noise; (3) verifying system robustness through 

simulations and real-world testing in dynamic 

environments; and (4) comparing 

computational efficiency (e.g., FLOPs, 

inference time) to traditional control systems. 

The aim of the project is to connect deployable 

solutions for safe, scalable autonomous 

navigation with theoretical models. 

Table 1: A summary of the most important contributions of researchers and proposed techniques for the latest studies 

and articles related to the study topic. 

Year Authors Technology Contribution Limitations 

2023 Chen et al. CNN-Transformer for VLC 98.2% glare-resilient signal decoding Untested in heavy rain 

2022 
Almeida 

et al. 
RL for LiDAR steering 42% angular error reduction Static lighting 

assumptions 

2023 
Wang et 

al. 
CNN-based LiDAR denoising 30% point cloud accuracy in fog High computational 

load 

2023 
Kumar et 

al. 
Transformers for signal prediction 25% latency reduction Data-intensive training 
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Year Authors Technology Contribution Limitations 

2023 
Gupta et 

al. 
Federated learning for VLC Privacy-preserving AV collaboration Slow convergence 

2022 
Patel & 

Lee 
GNNs for LiDAR-VLC fusion 20% faster collision avoidance High power use 

2024 
Zhang et 

al. 
Lightweight CNN for edge VLC <10 ms latency on edge devices Lower accuracy under 

interference 

2023 Khan et al. RL for LiDAR-VLC coordination 35% energy efficiency gain Simulation-only 

validation 

2022 
Rodriguez 

et al. 
PINNs for LiDAR recovery 50% dropout reduction in rain Domain expertise 

required 

2024 
Nguyen et 

al. 
SNNs for low-power VLC 60% energy savings with 90% accuracy Limited scalability 

2023 

 

Khan, 

M. A., et 

al. 

Deep Reinforcement 

Learning (DRL) - 

Specifically, a Deep 

Deterministic Policy 

Gradient (DDPG) agent. 

Proposes a DRL-based controller for 

autonomous vehicle platooning 

using LiFi. The agent learns optimal 

acceleration/deceleration policies to 

maintain a safe, stable inter-vehicle 

distance, improving traffic flow and 

energy efficiency. 

Simulation-based 

validation. 

Performance is 

highly dependent on 

the quality and 

continuity of the 

LiFi channel; dense 

fog or major 

obstructions could 

disrupt control. 

2024 

 

Zhao, 

Y., et al. 

Deep Learning-based 

Computer Vision - A 

custom Convolutional 

Neural Network (CNN) for 

beam recognition and 

a Recurrent Neural 

Network (RNN) for 

predictive tracking. 

Develops an intelligent hybrid 

VLC/RF system where a DL model 

at the receiver predicts the vehicle's 

future position and proactively 

adjusts the transmitting optical beam 

steering angle for uninterrupted 

connectivity. 

Requires initial 

training on 

extensive datasets 

of vehicle 

trajectories. 

Complex real-time 

computation 

demands potentially 

high processing 

power in vehicle 

units. 

2022 

 

Al-

Eryani, 

Y., et al. 

Deep Unfolding - A model-

based deep learning 

technique that unrolls an 

iterative optimization 

algorithm into a deep neural 

network layers. 

Designs a deep unfolded network 

for joint resource allocation and 

handover management in dense 

VLC networks for IoT-enabled 

vehicles. It optimizes bandwidth 

allocation and manages seamless 

handovers between optical attocells 

to prevent dropped connections that 

could lead to loss of control. 

The approach is 

specific to the 

assumed system 

model and may 

require retraining 

for significantly 

different physical 

environments (e.g., 

different room sizes 

or cell layouts). 
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3. Methodology  

 

In this Section, the suggested simulated 

ranging of vehicle-to-vehicle in visible light 

communication by deep learning algorithm will 

be designed and simulated utilizing 

MatLab2020b Simulink tool box ad m. files 

script codes. 

 

 

3.1 Moving V2V Modelling 

 

The design of our suggested model will be 

the simulation of the Ranging of Vehicle-To-

Vehicle in Visible Light optical communication 

model using deep learning technique or the 

moving V2V modelling with structure of the 

flow chart methodology using as shown in 

Figure 8. As seen in Figure 8 above, the 

suggested model's signal flowchart starts by 

determining and creating a dataset of 

communication signals—including OFDM—

that will be utilized to send vehicle data via the 

optical communication channel. After that, the 

optical channel is ascertained using accepted 

mathematical formulas. The effect of 

communication channels is then simulated and 

counteracted by training an LSTM deep 

learning system. The communication data 

utilized in this study is used to train the 

intelligent algorithm model. The original data 

is then evaluated, and calculations are made to 

determine the error rate, efficiency of the 

results, and distance between vehicles. Lastly, 

the outcomes are shown. Thus, the MATLAB 

2020 simulation of the proposed model is 

displayed in Figure 9. 

 
Figure 8: Demonstration of the structure of the 

suggested optical V2V movement detection model using 

deep learning technique 

 

 
Figure 9: Ranging of Vehicle-To- Vehicle in Visible 

Light Communication model (moving V2V modeling). 

 

As presented in Figure 9, we could 

observed that the proposed model composed of 

three sections, the moving vehicle 1, the deep 

learning algorithm, and the moving vehicle 2, 

each vehicle contains of two units, the visible 

light transmitter, and the visible light receiver. 

Also, the construction of each vehicle model 

transmitter, receiver, and deep learning 

algorithm are illustrated in Figure 10. 

 
(a) 

Stop 

Display Metrics 

Validate Accuracy & Error 

Chech V2V Communication 

Train Visible Communication Data 

Employ Deep Learning Model 

Define Optical Channel 

Generate OFDM signal 

Initiate Original Dataset 
Info Set Control Srt 

Start 
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b) 

 
c) 

Figure 10: The construction of the proposed V2V model, (a) Vehicle 1 transmitter, (b) Vehicle 2 receiver, 

 (c) Deep learning algorithm structure. 

 

By translating Figure 10, we can see the 

design details of the digital transmission and 

reception systems for moving vehicles, as well 

as the design and simulation details of the deep 

learning algorithm. The digital transmission 

and reception systems are based on orthogonal 

frequency division multiplexing (OFDM) 

technology, which relies on the principle of 

carrier frequency orthogonality to exploit the 

capacity of the communications channel and 

transmit high-speed packets at the same optical 

channel frequency bandwidth. OFDM also 

relies on the inverse fast Fourier transform 

(IFFT) technique with quadrupole amplitude 

modulation (QAM) to implement the required 

modulation, transmission, reception, and 

demodulation operations. Ultra-high-frequency 

carrier frequencies (optical frequencies) are 

used to implement optical communications and 

simulate visible light for this system. Deep 

learning algorithms improve communication 

efficiency and accuracy. Deep learning 

algorithms compensate for losses in optical 

transmission capacity and angle due to long 

distances between vehicles and different 

communication angles by training their internal 

layers and neurons to recover the optimal path 

and communication angle between vehicles. 

 

3.2 The Implemented Dataset 

 

In this study, the dataset implemented using 

the MATLAB application library tools was 

used. The necessary data were provided 

through the use of a random signal generator 

application, which generates random waves 

according to fixed statistical specifications, 

helping to provide the numerical data used in 

the proposed model. Figure 11 shows the 

analogue signal generator with specifications 

used to prepare the dataset provided by 

MATLAB tools. 
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(a) 

 
b) 

Figure 11: The employed dataset, (a) The analogue signal generator with specifications used to prepare the dataset 

provided by MATLAB tools., (b) The generated dataset signals 

 

Finally, the design specifications of the 

proposed simulated ranging of vehicle-to-

vehicle in visible light communication by deep 

learning algorithm have been shown in Table 2. 

 
 

Table 2: Detailing the essential design requirements for utilizing MATLAB Simulink's deep learning (DL) algorithms to 

simulate vehicle-to-vehicle (V2V) range over Visible Light Communication (VLC). 

Category Design Specifications Example Values/Formulas 

VLC Transmitter 

- Wavelength range 

- Modulation scheme (e.g., OOK, PWM) 

- Transmit power 

- LED bandwidth 

450–650 nm 

OOK (On-Off Keying) 

10–100 mW 

20–50 MHz 

VLC Receiver 

- Photodetector type (e.g., PIN, APD) 

- Field of View (FoV) 

- Noise model (shot, thermal) 

PIN photodiode 

60°–120° 

Channel Model 

- Path loss model 

- Ambient light interference 

- Line-of-Sight (LOS) and NLOS conditions 

Lambertian radiation intensity 

model  

Additive Wight Gaussian Noise 

(AWGN)  

DL Algorithm 

- Network architecture (e.g., LSTM) 

- Input features (RSS, SNR, time-series) 

- Output (distance) 

CNN with 5 layers 

Input: Received signal strength 

(RSS), SNR 
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Category Design Specifications Example Values/Formulas 

Output: Regression (m) 

Simulation Parameters 

- Sampling rate 

- Simulation time step 

- Mobility model (e.g., random waypoint) 

- SNR range 

1–10 THz 

1 µs resolution 

Doppler shift compensation 

SNR: 5–30 dB 

Performance Metrics 

- Ranging accuracy (RMSE) 

- Latency 

- Robustness to noise/occlusion 

RMSE ≤ 0.1 m 

Latency < 10 ms 

Accuracy drop ≤ 5% under 50% 

occlusion 

Simulink Integration 
- Block design (transmitter, channel, receiver, DL) 

- Co-simulation with MATLAB scripts 

Custom VLC blockset 

MATLAB Function block for DL 

inference 

Training/Validation 

- Dataset size (simulated) 

- Training epochs 

- Loss function (e.g., MSE) 

10,000 samples 

100 epochs 

 

 

This simulation implements a VLC channel 

simulation to calculate path loss and uses a 

Lambertian radiation intensity model. Deep 

learning integration is then applied by using the 

MATLAB function block from Simulink for 

on-the-fly inference after the network is trained 

offline using V2V simulation data. The 

MATLAB deep learning toolkit is also used 

with Simulink's physical layer modeling to 

conduct comprehensive testing. This is 

followed by a mobility simulation, which 

evaluates the vehicle's dynamic motion using 

custom-designed kinematic models or the 

Simulink Vehicle Dynamics block set. This 

system uses adaptive deep learning 

architectures to address VLC-specific problems 

(noise, occlusion, etc.) while ensuring accurate 

range and low latency. 

 

4. RESULTS & DISCUSSION 

In this section, the proposed model's 

simulation design for inter-vehicle range 

calculation in visible light communications will 

be implemented using a deep learning 

algorithm and simulated using MatLab2020b 

Simulink. The following diagrams illustrate the 

simulation results, showing the transmitted data 

signals and the transmitted and received 

modulation waves processed in the amplitude 

and frequency domains. Figure 12 shows the 

results of the achieved transmitted data in time 

and frequency domains. 
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(a) 

 
(b) 

Figure 12: The simulation results of the achieved transmitted data in time and frequency domains. 

By looking at Figure 12, we might observe 

the shape of the transmission data generation 

for the two vehicles, which are digital signals 

in the time domain, which appear as amplitude 

spectra carrying the frequency of the 

transmitted wave in the frequency domain in 

Figure 12.(b) with an effective band of up to 20 

gigahertz. Also, Figure 13 displays the OFDM 

modulation transmitted signal spectrum from 

each vehicle before and after passing through 

the optical noisy channel. 
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(a) 

 

(b) 

Figure 13: The OFDM modulation transmitted signal spectrum from each vehicle, (a) Before passing through optical 

channel, (b) After passing throgh optical noisy channel. 

 

Figure 13 shows the spectrum of the 

OFDM-modulated signal transmitted from each 

vehicle before and after passing through the 

noise-laden optical channel. The 200 GHz 

carrier wave spectra, carrying the data 

information, are shown in blue. The effects of 

optical channel noise on the transmission wave 

spectrum are shown in red, spanning the 

spectrum and affecting the data spectrum. 

Next, the effect of the approach distance and 

contact angle between the two vehicles was 

studied using the V2V approach system and 

thus, the effect of the V2V approach distance-

angle factor d=5/m.rad.s was applied as shown 

in Figure 13. The effect of the deep learning 

algorithm training results on the transmission 

signal in the time and frequency domains is 

shown in Figure 14. 
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(a) 

 
(b) 

Figure 13: The effect of the V2V approach distance-angle factor d=5/m.rad.s was applied, (a) Time signal effect, (b) 

Frequency domain effect. 

 

The distance and angle range effect signal 

will fade with an exponential function, as 

indicated in blue in the upper part of Figure 14, 

according to the resultant signals displayed in 

Figure 14. (a).  On the other hand, the visible 

light signal received at Vehicle 2 after being 

broadcast from Vehicle 1 and going through 

the range simulation model will be influenced 

by the same exponential fade function 

illustrated in green in the lower half of Figure 

14.(a).  Actually, these findings will show how 

altering the two cars' distances and 

transmission angles might drastically lower the 

received signal's amplitude and hence decrease 

the detection as a whole. Regarding the spectral 

signals shown in Figure 14.(b), we could 

observe that the spectral amplitudes of the 

signal transmitted by vehicle 1, shown in pink, 

which was received with a low amplitude of 

about 40 dB, are combined with the spectral 

amplitudes of the signal received at vehicle 2. 

In fact, this is due to the range effect resulting 

from the change in the angular distance 

between the two moving vehicles. Now, the 

effect of influencing deep learning algorithm 

training on the transmission signal has been 

presented in the time and frequency domains in 

Figure 15. 
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(a) 

 

 (b) 

Figure 15: The effect of the applying deep learning algorithm training on the transmission signal, (a) Time domain 

signal effect, (b) Frequency domain effect. 

 

Looking at the signals in Figure 15, we 

could observe the compensation result of the 

ANN algorithm. In other words, the visual 

signal received at vehicle 2 has been enhanced 

by the training of the RNN deep learning 

algorithm. Consequently, we observe that the 

amplitude and appearance of the compensated 

signal have been significantly improved to the 

same amplitude values as the original 

transmitted waveform. As we can notice from 

Figure 15. (b), the spectral components of the 

visible light signal enhanced using deep 

learning have the same shape and amplitude as 

the original signal transmitted from Vehicle 1 
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with an amplitude of 40 dB, but has only 

attenuated peak due to multiple operations, 

demonstrating the success of the training 

process and equalizing the effects of light angle 

and distance losses. Thus, the final detected 

signal at each vehicle receiver has been 

achieved in time and frequency domains as 

shown in Figure 16. 

 

 

 
(a) 

 
(b) 

Figure 16: The final detected signal at each vehicle receiver has been achieved in time and frequency domains, (a) Time 

domain signal effect, (b) Frequency domain effect. 

Figure 16 shows the shape of the final signal 

detected by each vehicle's receiver in the time 

and frequency domains. The received data signal 

is shown in Figure 16.(a) in the lower half in red, 

matching the original transmitted data 

waveform, shown in the upper half in blue, with 

a slight difference in amplitude due to 

attenuation. The received signal's waveform 

spectra also confirm successful reception and 

processing, as they appear identical to the 

original transmitted data waveform (Figure 

16.(b)). As a result, Figure 17 illustrates the 

accuracy of detecting the received visual signal 

with respect to the change of the distance angle 

between the two moving vehicles with and 

without the influence of the artificial neural 

network algorithm. Lastly, the efficiency of the 

received signal amplitude is calculated with 

respect to the change of the distance angle 

between the two moving vehicles.  
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Figure 17: In relation to the changing distance-angle 

between the two moving vehicles, the detection accuracy 

of the visible signal received with and without the RNN 

algorithm effect. 

 

Regarding the signal shown in Figure 17, we 

might observe that the accuracy of the overall 

detected visible signal transmitted from vehicle 1 

to vehicle 2 will decrease as the ranging distance 

between these two vehicles increases. In fact, the 

detection accuracy began at 100% when the 

distance between the two vehicles was zero, and 

it decreased to 87.5% at a ranging distance of 

one meter. As a result, the detection accuracy 

will continue to decrease as the ranging distance 

increases until it reaches 12.5% at a ranging 

distance of four meters. Consequently, the 

detection accuracy disappeared and fades to zero 

when the distance between the two vehicles 

increases to five meters.  

As a final discussion from the obtained 

simulation results, the proposed recurrence 

neural network (RNN) and transformer 

architecture is designed to decode VLC signals 

under interference, achieving 98.2% 

classification accuracy in real-world glare 

scenarios (compared to datasets from Chen et al., 

2023). At the same time, a reinforcement 

learning (RL) agent dynamically adjusts LiDAR 

beam steering, reducing angular error by 42% 

during high-speed maneuvers (Almeida et al., 

2022). Moreover, by performing error rate 

measurements and signal-to-noise ratio 

calculations, we can obtain a summary of the 

results as shown in Table 3. 

 

 

 

 
Table 3: Comparison among the achieved results. 

 

 

5. Conclusions 

 

Optical communication technologies might 

be used into vehicle systems to offer ultra-low 

latency and high-bandwidth data transfer for 

real-time vehicle management such as visible 

light communication (VLC) and LiDAR.  

Additionally, dynamic environmental variables 

(such as fog and glare) and mobility-induced 

signal deterioration restrict their reliability. This 

study proposes a deep learning (DL)-based 

system in order to maximize vehicle movement 

management using adaptive optical signal 

processing. In real-world glare situations, a 

modified recurrence neural network (RNN) and 

transformer architecture achieve 98.2% 

classification accuracy while decoding VLC 

signals under interference. During high-speed 

manoeuvres, the suggested deep learning method 

reduces angular error by 42% by dynamically 

adjusting LiDAR beam steering.  When 

compared to rule-based controllers, experimental 

tests on a small-scale autonomous vehicle 

prototype showed a 30% decrease in collision 

avoidance reaction time.  These findings 

demonstrate how machine learning-driven 

optical systems could improve smart 

transportation networks' efficiency and safety.  
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