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In the past, cancer diagnosis (CD) and prognosis were based largely on clinical 

intuition and empirical reasoning whereas now data-driven approaches, especially 

deep learning (DL) and machine-learning (ML) models have paved the way to predict 

both disease progression and likely treatment, contingent on their risk or benefit to the 

individual patient. Nevertheless, the high-dimensionality and heterogeneity of 

biomedical data suffer from potential overfitting, computational complexity, and 

reduced model interpretability. Feature selection (FS) techniques have gained 

increasing attention in also resolving these arisen problems by selecting relevant and 

informative attributes from a large volume of data. This study is to offer a systematic 

review of conventional and recent existing nature-inspired FS techniques that are 

classified in filter, wrapper, embedded, hybrid and ensemble techniques, and to discuss 

their applications in cancer-related research. We contrast strengths and weaknesses of 

each technique and discuss which are appropriate for high-dimensional data. 

Moreover, the paper summary recent works with different cancer types (including 

breast, lung, prostate, ovarian, and colorectal) to demonstrate how prediction 

performance is affected by different FS techniques and classifiers. The review also 

discusses current limitations such as small sample size, noisy or incomplete data, 

scalability and reproducibility. Finally, we consider future directions focusing on the 

importance of biologically-inspired FS strategies, appropriate benchmarking 

approaches, and the design of robust, scalable and interpretable models for clinical 

application. 
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1. Introduction  

Cancer Disease (CD) stays one of the 

world’s major general health hazards, given its 

high mortality and morbidity rates [1]. 

Different factors influence the development of 

CD, containing intrinsic factors and extrinsic 

factors. Numerous patients encounter 

metastases and recurrences during or after the 

medical process in spite of the significant 

advancements made in cancer medicines, such 

as immunotherapy, targeted therapy, 

radiotherapy, chemotherapy, and surgery [2]. 

Metastasis and recurrence result in treatment 

failure, underscoring the issues posed via 

treatment resistance and exhibiting the 

requirement to improve the effectiveness of 

cancer treatments [3]. The money rate after 

treatment is closely connected to the duration 

of CD development. Relevant analyses have 

demonstrated that patients' survival rates 

increase with earlier CD detection [4]. CD 

diagnosis is now being simplified. Usually, 

ultrasound, magnetic resonance imaging, 

computed tomography, and additional imaging 

tests are completed first, then the doctor 

https://rjes.iq/index.php/rjes


 
 

Aythem et al/ Al-Rafidain Journal of Engineering Sciences Vol. 3, Issue 1, 2025: Vol. 3, Issue 2, 2025: 337-342 

344 

 

delivers a primary clinical diagnosis. CD 

diagnosis strategy is primarily based on 

doctors’ subjective judgment; therefore, the 

diagnostic effects are mainly limited by the 

doctors’ experience and skill. Inexperienced 

doctors are inclined to misdiagnose, and even 

doctors with long-term applicable experience 

have problems making entirely accurate and 

consistent judgments when encountering 

different complicated diseases. Most of the 

practical information in the image is concealed 

in tiny gray differences, which are challenging 

for humans to determine [5]. 

Developing a robust and accurate approach 

is vital for predicting CD. Multifarious ML 

techniques have been invented for clinical 

applications, including Decision Tree (DT), 

Support Vector Machines, Naive Bayesian, 

Random Forest (RF), ensemble models, and 

Neural Networks (NNs). Using ML techniques, 

different clinical characteristics of cancer 

patients can be fused with their survival rates 

[6]. ML techniques also have the advantages of 

decreasing medical practitioners' workloads 

and the risk of human mistakes. The increased 

ML performance has made it a motivating and 

exciting mechanism for healthcare providers 

[7]. 

Currently, with the beginning of developed 

technologies, a significant amount of high-

dimensional dataset has been delivered in 

medicine, specifically in fields associated with 

cancer care and treatment strategies. The high 

dimensions of the dataset and quality-related 

issues, such as misleading features, useless, 

duplicate, missing, and irrelevant data, make it 

more challenging to achieve discernment from 

data. In addition, if there are numerous 

variables and the sample size is small, 

problems connected to overfitting may occur. 

High-dimensional data reduces the model's 

efficiency. A straightforward forecast model 

with optimized features achieves high 

performance, corresponding to a full-featured 

model. Thus, high-dimensional and raw data 

should be preprocessed to make them more 

suitable for additional analysis. This technique 

is called FS [8]. 

The main objectives of this review paper 

are to supply a comprehensive overview and 

vital analysis of FS techniques used in cancer 

prediction through ML techniques. As cancer-

related datasets often have high dimensional 

data, such as gene expression profiles and other 

omics characteristics, selecting the more 

relevant and informative attributes is important 

for building interpretable, efficient, and 

accurate predictive models. This review aims to 

classify and evaluate various FS techniques, 

including filter, wrapper, embedded, and 

hybrid techniques, based on their application in 

cancer research. This review highlights the 

performances, limitations, and advantages in 

various anal; we aspire to guide researchers in 

determining proper techniques for cancer 

prediction studies and to determine gaps and 

future trends for enhancing FS strategies in this 

domain. 

2. Feature Selection  

Datasets typically contain redundant and 

irrelevant features that adversely impact the 

ML process. Thus, features that contribute to 

the ML process should be detected utilizing FS 

techniques [9]. Utilizing assistance from 

domain expertise, common sense, and domain 

knowledge may allow for the detection and 

elimination of redundant features. 

Nevertheless, a more methodical approach is 

required for high dimensional data sets. Since 

irrelevant and redundant features have no 

significant influence on ML, tossing them from 

the learning strategy will allow for creating 

simple models, bypass the dimensionality 

curse, decrease overfitting, and improve 

learning speed [8]. 

  

2.1 Feature Selection Techniques  

The FS techniques can be split into three 

methodological types, including wrappers, 

filters, and embedded techniques [10]. These 

techniques differ in terms of 1) the FS 

characteristic being integrated or separated as a 

learning algorithm part, 2) evaluation criteria, 

3) computational complexities, and 4) the 

possibility of detecting interactions and 

redundancies between features. Table 1 

provides a more exhaustive outline of the 

disadvantages and advantages of the three FS 

techniques [11][12]. 
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Table 1: Exhaustive overview of the disadvantages and advantages of the FS techniques  

FS 

techniques 
Advantages Disadvantage 

Filters - Good generalizability. 

-Appropriate for high dimensional data. 

-Fast execution. 

-Independent of learning model. 

- Fail to manage the redundancy issue. 

- Interactions between features are 

ignored. 

Wrappers - Identify feature interactions of higher 

order. 

-Take into account the interaction 

between features. 

-Better performance attainability. 

-The learning algorithm is created from 

scratch for each subset. 

-Prone to over-fit. 

-Very expensive in terms of execution 

times 

Embedded -Identify feature dependencies. 

-Take into account the interaction 

between features. 

-Accurate. 

-Faster than wrappers. 

-Classifier-dependent selection. 

-Learning algorithm-specific. 

In addition to these three main techniques, 

there are also hybrid, and ensemble approaches 

that combine two or more of these techniques to 

leverage their complementary strengths and 

improve FS performance. Figure 1 displays the 

types of the FS techniques. 

 

Figure 1. Types of FS techniques. 

FS techniques can be described in detail as 

follows: 

2.1.1 Filter Techniques  

Filters evaluate feature relevance depend on 

the main characteristics of the data. The filtering 

process includes two key steps. To generate the 

classification model, features are first ranked 

separately based on a special criterion 

measurement such as entropy, distance, and 

Pearson correlation. Second, it determines the 

best-ranked features employing a threshold 

value. The rest of the features are considered to 

be uninformative and unnecessary. Filter 

techniques are fast, which makes them more 

appropriate for high-dimensional data. Since the 

associations between the independent features 

are not deemed, redundant features may be 

permitted to be selected. The following sub-

sections supply an in-depth analysis of five well-

known filter techniques [13]. 

 

2.1.1.1 Mutual Information (MI)  

MI technique indicates how much data is 

swapped between the class label and feature. It is 

an estimate of the influence of one random 

variable on another [14]. The attribute with the 

most communicated information within the 

category target is the most suitable, since it may 

actually determine associates of one category 

from those of another. It is mathematically 

expressed in Equation 1 as follows [11]:  

 (   )  

 ∑ ∑  ( ( )  ( ))    (
 ( ( )  ( ))

 ( ( ))  ( ( ))
) 

   
 
    ( )   

 

Where,  (   ) is the probability of X and Y, 

 ( ( ))   and  ( ( )) are the marginal probability 

of X and Y,     (
 ( ( )  ( ))

 ( ( ))  ( ( ))
)measures how 

much the actual joint distribution deviates. MI is 

zero when Y and X are statistically independent 

( ( ( )  ( ))   ( ( ))  ( ( )) ). 
 

2.1.1.2 Relief   
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Relief technique is an instance-based 

technique. It attempts to encounter the nearest 

neighbor from the same category (nearest hit) 

and the opposing category for each training 

sample (nearest miss) [15]. The contrast in each 

attribute's score is the difference between them. 

The Relief quantifies individual features with a 

score   , which can be utilized to rank features. 

This technique can be positively sufficient for 

high-dimensional data since the weighting    of 

each attribute is iteratively altered for each 

established case. If the feature weight is from the 

feature in nearby samples of the exact category 

instead of nearby samples of the other category, 

the feature weight reduces; otherwise, it 

increases. The formula of feature's weight is 

computed in Equation 2 [11]: 

      (           )
 

 (            )
  ( ) 

 

The technique's limitations include the fact 

that it is only applicable to binary classification 

issues and does not address redundancy. A 

comprehensive interpretation of Relief named 

Relief-A is presented for cracking the missing 

data problem in order to crack the earlier 

represented issues with Relief. Relief-F is 

executed to solve multi-class problems. 

 

2.1.1.3 Pearson correlation coefficients (PCC)  

Feature selection algorithms Among the 

filter-based feature selection techniques, PCC is 

popularly used. It is a parametric technique 

proposed by Karl Pearson, to examine the degree 

of the linear association between two variables 

[16]. PCC works very well with data that are 

normally distributed. It outputs a CC value with 

values between -1 and 1, where a value of 1 

represents a perfect relationship. A positive 

correlation coefficient (CC) indicates direct 

relationship (gain in one variable corresponds to 

a gain in the other as well), while a negative 

correlation coefficient shows the inverse 

relationship, where one of them grows as the 

other diminishes. A CC equal to zero indicates 

no linear relationship among the variables. The 

relationship between two variables is calculated 

through the correlation coefficient, r and t, 

respectively by the formula in Equation 3 [17]: 

  
∑ (    ̅)(    ̅)
 
   

√∑ (    ̅) (    ̅) 
 
   

 ( ) 

 

where r and t represent the mean of the values 

of the r and t variable,    and    represent the 

value of the r and z variable in an instance. 
 

2.1.1.4 Fisher score (F-score)  

The F-score is a well-known supervised FS 

technique. It considers each feature individually 

according to the Fisher criterion and ranks them 

to construct a potentially suboptimal subset [18]. 

his technique can be used for separation of two 

real data sets. In the best-case scenario, good 

descriptors generate same feature for samples of 

the same class and different feature for samples 

that have different classes. The F-score for a 

feature i is obtained via Equation 4 which allude 

to the count of positive and negative instances 

[17]. 

 ( )  
(   

     )
   (   

     )
 

 
       

∑ (   
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Where,    ,    
   and    

 
 are the average of 

    feature of the whole, positive and negative 

instance and    
 

 and    
 

  are the     feature of the 

    positive and negative instance respectively. 

 

2.1.1.5 Information Gain (IG)  

The IG filter-based FS technique is mainly 

employed to gauge the significance of features in 

classifying issues in DT models. It can likewise 

be extensively employed in other ML models. 

IG is based on the idea of entropy from 

information theory, describing the uncertainty or 

impurity in a group of instances. 

Mathematically, the IG between two variables A 

and B is developed as the difference between the 

initial entropy of A and the entropy of A after 

following B. It can be represented Equation 5 as 

[19]: 

  ( | )   ( )   ( | ) ( ) 
 

Where H(A) is the entropy for variable A and 

H(A|B) describes the dependent entropy for A 

given B. To calculate the IG value for a feature, 

calculate the entropy of the target variable for 
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the total dataset and remove the conditional 

entropies for every possible value of that feature. 

Also, the entropy H(A) and dependent entropy 

H(A|B) are calculated from Equations 6 and 7 

[17]: 
 

 ( )   ∑ ( )     ( )

   

 ( ) 

 

 ( | )

  ∑ ( )∑ ( | )     ( ( | )

      

 ( ) 

Therefore, when assessing two variables A and 

C, a variable B is considered to have a more 

robust correlation with A than with C if  ( | ) 
>   ( | ). Moreover, IG estimates each feature 

independently and considers its relevance to the 

target variable. 

 

2.1.1.6 Analysis of Variance (ANOVA)  

ANOVA is a grouping of parametric statistical 

measures and their analysis techniques that 

specifies if the means of two or more instances 

of data are drawn from the same distribution 

[20]. The ANOVA technique is a F-statistic used 

here as an ANOVA F-test. It is a univariate 

statistical test where each attribute corresponds 

to the target attribute to determine whether there 

is any statistically important association between 

them. Mainly, ANOVA is employed in such 

classification issues where the class of input 

features is numerical, and the target feature is 

categorical. The Equation 8 can describe the 

mathematical formula for the ANOVA technique 

[21]. 

 

             
   

   
 ( ) 

 

Where VBG is variance between groups, VWG 

is variance within groups, which calculated from 

Equations 9 and 10. 
 

     
∑   ( ̅   ̅)

  
   

(   )
 ( ) 

     
∑ ∑ (     ̅ )

   
   

 
   

(   )
 (  ) 

Where M is the entire instance size, L is the 

number of    groups, is the number of 

observations in the     group,  ̅   is the     group 

instance mean,  ̅  is the entire mean of the data, p 

is the      observation in the      out of L groups. 
 

2.1.1.7 Chi-Square  

The chi-square test is employed to estimate 

the independence between the target variable and 

categorical features. It assesses how observed 

data distribution differs from predicted 

commonnesses under the independence 

assumption. Attributes with higher chi-square 

scores are considered more appropriate. This 

standard is generally used in classification issues 

where the feature and target variables are 

categorical [22]. Chi2 is a statistical test that 

assesses the level of relationship between a 

target class 𝑦  and feature    by approximating 

the observed    and predicted 𝐸  
commonnesses. It is mathematically represented 

in Equation 11. 
 

  
   ∑*

(𝐸    )
 

  
+

 

   

 (  ) 

Where   is the Chi-square, v is the degrees of 

freedom, E describes the observed 

commonnesses, Q describes the predicted 

commonnesses, and L describes the number of 

instances in the dataset [23]. 
 

2.1.1.8 Minimum Redundancy Maximum 

Relevance (MRMR)  

MRMR is an FS technique that aims to 

encounter features that are maximally 

appropriate to the data class and minimally 

redundant to the other features. Technique 

accuracy is enhanced by terminating redundant 

features or features that show a robust 

correlation with the category, as a development 

of advancing feature relevance and reducing 

feature redundancy. The main advantages are 

accurate and quick analysis compared to other 

techniques, as well as relevancy optimization. 

The technique, however, is known to be 

significantly influenced by parametric measure 

sensitivity [24]. 

 

2.1.2 Wrapper Techniques  

Wrapper techniques consider a subset of features 

with a given ML algorithm to access their 
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efficiency. In contrast to filter approaches, which 

rank features regardless of any learners, wrapper 

approaches train and test the model repeatedly 

with different sets of features to select the set 

that has the best predictive performance [25]. 

These approaches evaluate the quality of feature 

subsets according to prediction performance as a 

target function. The wrapper technique is usually 

carried out prior to and after the training when 

learning is performed. This objective is to 

maximize the prediction accuracy and the quality 

of the fit by optimally grouping features for 

classification problems. An advantage of 

wrapper techniques is that they can consider 

interactions and dependencies among features, 

and choose more informative subsets. 

Nevertheless, one of the main drawbacks is that 

the computational burden is heavy as the 

learning algorithm has to be retrained and tested 

for each candidate subset. The overall workflow 

of a simplex wrapper-based feature selection 

process is shown in Figure 2 Familiar wrapper 

approaches include PSO, GA, and RFE [26]. 

 
Figure 2. The wrapper technique workflow. 

 

2.1.2.1 Stepwise  

Stepwise is a classical wrapper technique in 

statistics and data science that is frequently used. 

It uses a greedy algorithm that examines and 

selects the subsets of variables in terms of 

contributing to the model performance of each 

step [27]. Variables are gradually added or 

removed according to optimization criteria in 

order to construct an almost optimal subset. One 

advantage of the stepwise approach is that it is 

supervised - it assesses the contribution of leads 

on the outcome which allows meaningful 

selection of leads based on relative effect. 

Nonetheless, stepwise selection is not applicable 

to high-dimensional data, due to a potential in 

over-fitting and computational expense. In 

addition, the globally optimal subset cannot be 

ensured to be found, because it is sensitive to the 

order of feature inclusion and dependent on the 

initial solution. This limitation is partially 

relieved by removing recently added redundant 

features [28]. 

 

2.1.2.2 Boruta  

Boruta is the wrapper feature selection technique 

that centers on the RF classifier. It derives from 

two core principles. First, it incorporates shadow 

features which is generated as a mirrored 

features from the original features, being used as 

a reference for the assessment of feature 

importance [29]. If features import score is 

significantly lower than the top ranked shadow 

feature then it does not have significant 

predictive value. Second, Boruta performs this 

evaluation process repeatedly n times and then in 

each round uses the binomial distribution to 

statistically test the significance of the features. 

Only features which outperform shadow features 

in all iterations are kept. Although Boruta works 

very well in terms of identifying all important 

features, it is computationally expensive since it 

requires repeated model fitting and ranking. 

Moreover, it tends to yield models with many 

features, as it does not favor model sparsity [30]. 

 

2.1.2.3 Genetic Algorithm (GA):  

GA inspired by evolution in natural systems, are 

heuristic optimization techniques evolved from 

the basic principles underlying natural selection 

and genetics [31]. For the purpose of feature 

selection, each set of potential features is taken 

as a ―chromosome‖ of a population. The 

chromosomes then evolved across successive 

generations employing operations like crossover 

(recombination) and mutation for the exploration 

of the search space by the algorithm. 

A fitness function (FF) is a measure employed to 

estimate the quality of each chromosome at this 

stage - which normally utilizes the predictive 

performance of the model with the applied 

feature selection. There are greater chances that 

subsets having baser performance are less likely 

to be selected for reproduction across 

generations [32]. GA are also beneficial in 

feature selection for high-dimensional data space 

where exhaustive search is not feasible. Such 

techniques can find a set of (near) optimal 

features with moderate amounts of computation. 

However, GAs performance may be affected by 
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 algorithm
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hyperparameters such as mutation rate, crossover 

probability, and size of the population, which 

sometimes needs to be adjusted during an 

iterative process [30]. 
 

2.1.2.4 Recursive Feature Elimination (RFE)  

RFE is a valid FS technique for irrelevant feature 

elimination from the input feature set and 

identifying the critical features that distinguish 

between classes [33]. The RFE aims to decrease 

the complexity of the feature set while keeping 

high accuracy. It leverages the capacities of RF 

classifiers to achieve an iterative evaluation of 

the variable importance, demanding the 

performance of numerous classification 

iterations. The iterative strategy consists of 

multiple key phases: the development of a vital 

RF classifier, the estimation employing cross-

validation techniques, the investigation of 

feature prerogative metrics, and the 

transformation of the feature set for succeeding 

iterations. Every feature in the subset is engaged 

in the initial classification round. The worst-

performing features are then determined and 

removed from the feature set, training for the 

subsequent phases. Also, RFE reprises this 

technique to decrease the likelihood of 

convergence and dependencies among the input 

features [34]. 
 

2.1.2.5 Sequential forward selection (SFS)  

SFS is a wrapper technique in which attributes 

are consecutively set to empty prospects until the 

standard is not modified [35]. SFS techniques 

employed to estimate an initial dimensional 

feature space from a new dimensional feature 

subspace are comprised in a set of mean 

investigation algorithms. The objective is to 

determine a subset of features that are most 

appropriate to the goal, resulting in optimal 

computational implementation while decreasing 

overfitting by deleting irrelevant data. The SFS 

functions sufficiently when the optimal subset 

has a small feature number [12]. 
 

2.1.2.6 Sequential backward selection (SBS)  

The SBS is a heuristic technique that 

automatically determines a sub-set of features 

most relevant to a characteristic issue, assisting 

in the evolution of a more efficient standard 

[36]. The SBS technique iteratively eliminates 

features with the least negligible influence on the 

performance until the selected number of 

features is produced. The reduction of 

unimportant features enables model inference on 

unrecognized data and enhances computational 

efficiency. The functional SBS principle begins 

with all the features, with an original size. The 

first iteration develops all potential feature 

subsets. For each subset, one feature is 

terminated, and the performance of the approach 

is evaluated. The feature that is skipped from the 

subset with the most suitable score is terminated. 

This process persists until the best evaluation 

score is specified as the last feature set [37]. 
 

2.1.2.7 Simulated annealing (SA)  

SA is a wrapper-based FS technique that is 

based on the process of annealing, which is the 

rearrangement of particles in a material as it 

cools (with reduced thermal energy) to a more 

stable state [38]. By analogy, the rank of SA will 

sort the different feature importance in terms of 

the classification performance and reshuffling 

particles for minimum energy. The algorithm 

starts by randomly choosing a set of features and 

a specified number of iterations. In each step, a 

new candidate set is produced by adding or 

deleting some elements from the previous set. If 

this change leads to better predict, the new 

subset is adopted. Otherwise, it may still be 

accepted according to the decreasing probability, 

resembling the cooling process. Such 

randomness helps the algorithm to get out of 

local minima and take chance of discovering a 

globally optimal feature subset [30]. 
 

2.1.3 Embedded Techniques  

Embedded feature selection techniques: they 

include the selection process in the model 

training itself, being a compromise between 

filter and wrapper techniques. In such 

techniques, the learning algorithm of model 

construction automatically selects the most 

informative features. In contrast to Wrapper 

techniques, which consider different feature 

subsets during the selection process, embedded 

techniques select the best features during the 

learning process, which is in general faster and 

less overfitting-prone. 
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Such techniques repeatedly select the most 

informative features and build a stable-and 

optimal-classifier. Embedded approaches are 

good at discovering feature interaction 

relationships since they are built into the 

structure of the model. They thus present a sweet 

compromise between performance and 

complexity. Figure 3 schematic workflow 

concept of embedded feature selection procedure 

[26]. 

 
Figure 3. The embedded technique workflow. 

 

2.1.3.1 Least Absolute Shrinkage and Selection 

Operator (LASSO)  

LASSO is an embedded technique of linear 

regression that integrates both regularization and 

feature selection. It reduces the sum of squares 

subject to a constraint on the sum of the absolute 

values of the model coefficients. This penalty — 

known as the L1 penalty — leads to a sparse 

model, meaning that the terms of some 

coefficients will end up being exactly zero, 

which in turn can help select important features 

and make models more interpretable. 

Mathematically, the LASSO loss of the function 

is described as: calculated in Equation 12 [28]. 
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By comparison, Ridge Regression, another 

regularization approach, applies the L2 penalty 

punishing the magnitude of the coefficients 

squared shows in Equation 13. 
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   (  ) 

 

Where m is the number of training instances, 

q is number of features, 𝑦  is the true target value 

for the      training sample,     is the value of 

feature i for the training sample    ,    is the 

coefficient of the     feature, and ϑ the 

regularization parameter that controls the 

strength of the penalty. The main advantage is 

the lower computation cost since it involves 

assessing regression parameters subject to a 

penalty term and creating parsimonious 

standards. On the other hand, it does not 

necessarily select the most illuminating features, 

and periodically, the variables specified are just 

too few [28]. 

 

2.1.3.2 Ridge  

Ridge, likewise understood as L2-

Regularization, is a regularization technique. 

The objective process delivers a squared 

magnitude of the standard parameters as a 

penalty term. Ridge shrink’s technique 

coefficients near zero but not exactly zero, 

unlike the LASSO technique, which presents a 

sparse exhibition of functions. The most 

significant discrepancy between Ridge and 

LASSO strategies is that LASSO decreases the 

coefficients of insignificant variables to zero, 

effectively compensating them out. Ridge 

creates non-zero coefficients, which are more 

helpful in analyzing features [11]. 
 

2.1.4 Hybrid Techniques  

Hybrid FS techniques Several feature 

selection techniques have been combined 

(hybridized) in existing research to take the 

advantage of two or more techniques at once 

[24][39]. Usually, the hybrid techniques are 

formed by the filtering and wrapping techniques 

combined together to overcome the problems of 

each technique. This, in turn, they increase the 

classification accuracy over that of single filter 

techniques, while keeping down the 

computational time of wrapper techniques. 

Hybrid techniques are also especially useful 

when confronted with standard data problems, 

such as missing values and noisy data. They 
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accomplish this by filtering irrelevant features 

using filter techniques to reduce noise, and then 

by refining using wrapper techniques or other 

selection approaches. This two-step approach 

does not only enhance the model's efficacy as a 

whole, but reduces the data, which in turn leads 

to quicker, better results. The typical procedure 

of a hybrid feature selection approach is shown 

in Figure 4 [24]. 

 
Figure 4. The general process of hybrid technique. 

 

2.1.5 Ensemble Feature Selection (EFS)   

EFS integrates the outcomes of multiple FS 

techniques to create a more accurate and robust 

subset of features. Rather than counting on a 

single technique, EFS combines multifarious 

selection techniques to enhance predictive 

performance, reduce redundancy, and improve 

generalization. By merging or aggregating 

feature subsets from various techniques, EFS 

apprehends complementary data, mitigates 

biases of individual techniques, and frequently 

exceeds standalone techniques in ML tasks. 

Figure 5 presents the principle of the EFS 

technique [12]. 

 
Figure 5. Overview of EFS technique. 

 

2.2 Main Factors to Select FS Techniques  

There are several characteristics to 

contemplate when choosing an FS technique for 

a special task, such as [30]: 

 Dataset size:  If the dataset is huge, 

consider a technique that is scalable and 

computationally efficient. 

 Handle missing values in your dataset: If 

the dataset has missing values, consider 

choosing a technique that can effectively 

handle them. 

 Interpretable features: If you consider 

how the specified features contribute to 

the model’s forecasts, you may want to 

select a more interpretable technique. 

 Selected features to be vital to 

differences in the modeling assumptions 

or data: robust technique must be chosen. 
 

3. Overview of Recent Studies FS Techniques 

for Cancer 

Table 2 presented provides a comparative 

overview of recent studies applying ML and FS 

techniques for CD and prognosis. Each study 

focuses on a distinct cancer type such as breast, 

gastric, lung, ovarian, cervical, colorectal, skin 

and prostate and explores different datasets, 

methodologies, and performance outcomes. Key 

information includes the publication year, cancer 

type, FS techniques, the type of FS (e.g., filter, 

wrapper, embedded, ensemble), dataset details, 

and the best-reported accuracy or related 

metrics. The structured summary is intended to 

enable the comparison and evaluation of ML 

techniques across diverse biomedical contexts, 

highlighting how FS and classifier combinations 

impact predictive performance in high-

dimensional cancer datasets. 
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FS techniques have demonstrated substantial 

effectiveness in cancer prediction by enhancing 

model accuracy, reducing dimensionality, and 

mitigating overfitting. Based on the studies 

summarized in Table 2., a wide range of FS 

techniques were applied across various cancer 

types, including filter, wrapper, embedded, 

hybrid, and Ensemble techniques. For instance, 

the study [40] used the Variable Importance 

Measure (VIM) to breast cancer datasets 

(WDBC and WBC), achieving high accuracies 

of 97.05% and 97.76%, highlighting the efficacy 

of variable importance-based filtering. In 

contrast, [41] used a combination of ANOVA, 

MI, Extra Trees, and Logistic Regression on the 

TCGA breast cancer dataset. However, it 

achieved only 0.86% accuracy due to challenges 

like class imbalance and the lack of biological 

feature integration. Recent studies show that 

hybrid and metaheuristic FS techniques often 

yield better results. For example, [42] employed 

PSO across multiple breast cancer datasets and 

achieved up to 100% accuracy on WDBC, while 

[43] combined RFE, LASSO, Boruta, PCA, and 

Relief to reach 99.3%. Similarly,[44] 

demonstrated exceptional performance (99.98%) 

across multiple microarray datasets by 

integrating five filter techniques with Moth-

Flame Optimization and Extreme Learning 

Machine (ELM). However, it suffered from 

overfitting due to high dimensionality and low 

sample sizes. In [45], which focused on prostate 

cancer, a comprehensive suite of FS techniques 

(Relief-F, L1-Lasso, Boruta, Genetic Algorithm, 

etc.) was used. Despite the methodological 

diversity, performance was more modest (AUC 

= 0.71, F1 = 0.76), illustrating that the number of 

FS practices alone does not guarantee superior 

results without careful model tuning and external 

validation. The [46] and [47] employed RF 

achieve excellent accuracy (100%) in lung 

cancer. Generally, the investigation indicates 

that ensemble and hybrid FS techniques tend to 

exceed single techniques in cancer prediction 

tasks. 

 

4. Current Challenges and Research Gaps  

In spite of the recent progress of FS 

technologies developed for cancer analysis, there 

have many challenges and research gaps that 

have impeded the generalization, robustness and 

clinical transformation of these approaches. The 

discussion of recent research provides a wealth 

of critical points that have to be covered for 

stronger and reproducible conclusions. However, 

several challenges must be handled, such as 

small sample sizes, computational cost, data 

imbalance, and lack of external validation 

remain standard limitations to provide reliable 

and generalizable clinical models. 

 

4.1 Handling Noisy and Incomplete Data 

One of the main issues so far is that the data 

are often noisy and incomplete, particularly 

clinical data and microarray data. The works of 

Lanjewar et al. [47] and Acosta et al. [48] used 

data that were not resilient to noise in real-world 

or had no data imputation capabilities. Most 

models were trained on nice, clean data, which is 

often quite different from real-world conditions 

in which you commonly have to deal with 

missing data and sensor noise. There are few 

papers that apply strong preprocessing 

techniques and techniques to deal with missing 

values. Future work should also address the 

development of FS techniques traffic flow and 

pipeline integrated data cleaning to insure 

clinical relevance in models. 

4.2 Small Sample Size and High-Dimensionality 

The curse of dimensionality the majority of 

cancer datasets, especially microarray and 

transcriptomic datasets, have a large number of 

features and a small number of samples. 

Publications like Abraham et al. [49] showed 

high accuracy, but they also had low sample 

sizes, which may result in overfitting or low 

statistical power. showed high accuracy, but they 

also had low sample sizes, which may result in 

overfitting or low statistical power. Further 

directions may include investigating the data 

augmentation, oversampling, and transfer 

learning in combating the problem of small data. 

Dimension reduction together with incorporation 

of prior biological knowledge is also 

underexplored. 

 

4.3 Small Sample Size and High-Dimensionality 

Advanced FS algorithms, such as GA, PSO, 

and DL-based hybrids (i.e., Lv et al. [50]; Zhu et 
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al. [51]) are highly predictive, but 

computationally expensive. This scalability 

problem narrows the scope, in particular in the 

context of large scale or real-time datasets. 

Although there is accuracy gain with the two 

stage (hybrid/ensemble) approaches, there is an 

urgent demand for efficient, scalable FS 

frameworks that achieve a tradeoff between 

performance and speed.
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Table 2: comparative overview of recent studies FS techniques for cancer  

Study 
Year 

Cancer 

Type 
FS Techniques FS Type Dataset Name 

Accuracy 

(Best) 

Sharma et 

al. [52] 

2021 Breast CFS, SFS, IG Filter, Wrapper, 

Filter respectively 

WDBC (UCI) 93% 

Taghizadeh 

et al. [41] 

 

2022 Breast ANOVA, MI, Extra 

Trees, Logistic 

Regression 

Filter (ANOVA, 

MI), Embedded 

(LGR), Ensemble 

(Extra Trees) 

TCGA (Breast 

cancer 

transcriptome) 

0.86% 

Huang et 

al. [40] 

2022 Breast Variable Importance 

Measure (VIM) 

Filter WDBC, WBC 

(UCI) 

97.05% / 

97.76% 

Afrash et 

al. [53] 

2023 Gastric Boruta, mRMR, 

LASSO, Relief 

Wrapper (Boruta), 

Filter (mRMR, 

Relief), Embedded 

(LASSO) 

Ayatollah 

Talleghani 

Hospital Iran 

89.10% 

Varan1 et 

al. [54] 

2023 Prostate Importance 

coefficient, 

Sequential 

(forward/backward), 

CC 

Filter + Wrapper PROSTATEx 90% 

Lanjewar 

et al. [47] 

2023 Lung MRMR, P-value test Filter Kaggle CT scan 100% 

Abraham 

et al. [49] 

2023 Ovarian Boruta, Lasso Filter Cancer Cell Line 

Encyclopedia 

98.5% 

Mylona et 

al. [45] 

2024 Prostate Boruta, mRMRe, 

ReliefF, RFE, RF-

imp, L1-Lasso, 

CorrSF, HSIC-Lasso, 

SES, GA 

Filter (ReliefF, 

mRMRe, CorrSF, 

SES), Wrapper 

(Boruta, RFE, GA), 

Embedded (L1-

Lasso, HSIC-

Lasso), Ensemble 

(RF-imp) 

ProstateNET & 

ProstateX2 

(MRI) 

 

AUC: 

0.71, F1: 

0.76 

Ileberi et 

al. [55] 

2024 Cervical PSO Wrapper Cervical Cancer 

Risk Factors 

Dataset 

(CCRFD) 

98% 

Sucharita1 

et al. [44] 

2024 Multiple 

(Microa

rray 

Data: 

Lung, 

Brain, 

Prostate

, Colon) 

Ensemble of 5 filters 

+ Moth-Flame 

Optimization (MFO) 

with ELM 

Hybrid (Filter + 

Wrapper) 

4 microarray 

datasets 

99.98% 

Tripathy et 

al. [56] 

2024 Multiple 

(Microa

rray): 

Colon, 

Leukem

ia, 

Prostate

, Brain 

tumor, 

Breast, 

and 

Adenom

a. 

4 Filter Techniques 

(CBFS, CST, InG, 

RFS) with ELM 

Ensemble 

Filter + Ensemble 7 microarray 

datasets 

74% 
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Kazerani 

[42] 

2024 Breast PSO Metaheuristic / 

Wrapper 

WDBC, WPBC, 

Coimbra 

100% 

Lv et al. 

[50] 

2024 Colorect

al 

DRMF-PaRa 

Framework 

(integrated deep FS) 

Embedded / Hybrid 

(DL + Fusion) 

Multimodal 

dataset 

87.6% 

Jasurbek et 

al. [57] 

2024 Skin GA Wrapper ISIC 2017 97.02 

Sahu et al.  

[58] 

2025 Breast PCA + LASSO Hybrid Breast Cancer 

Wisconsin 

Diagnostic 

Dataset 

99.42% 

Acosta‑ et 

al. [48] 

2025 Ovarian GA Wrapper Ovarian Cancer 

dataset (Soochow 

University) 

90.54% 

Khanna et 

al. [59] 

2025 Lung Gini Importance-

Based Rankin, RFE 

Ensemble VOCs from 7 bio 

sources 

100% 

Al-Jamimi 

et al. [46] 

2025 Lung RFE-SVM Hybrid Two unnamed 

lung datasets 

100% 

Chhillar et 

al. [43] 

2025 Breast RFE, LASSO, 

Boruta, PCA, and 

Relief. 

Filter, Wrapper, 

Embedded 

WDBC, MBCD 99.3% 

Zhu et al. 

[51] 

2025 Breast SHAP-RF-RFE + 

LightGBM + PSO 

Hybrid / Ensemble WDBC 99.0% 

Islam et al. 

[60] 

2025 Thyroid SelectKBest + 

Random 

Oversampling + 

Ensemble Voting 

Filter + Ensemble  99.72% 

Sharma et 

al. [52] 

2021 Breast CFS, SFS, IG Filter, Wrapper, 

Filter respectively 

WDBC (UCI) 93% 

Taghizadeh 

et al. [41] 

 

2022 Breast ANOVA, MI, Extra 

Trees, Logistic 

Regression 

Filter (ANOVA, 

MI), Embedded 

(LGR), Ensemble 

(Extra Trees) 

TCGA (Breast 

cancer 

transcriptome) 

0.86% 

Huang et 

al. [40] 

2022 Breast Variable Importance 

Measure (VIM) 

Filter WDBC, WBC 

(UCI) 

97.05% / 

97.76% 

 

 

4.4 Reproducibility and Standardization Issues 

Both Taghizadeh et al. [41] and Chhillar et 

al. [43] do not have external validation or 

standardized performances. Reproducibility is 

hampered by a lack of (1) standardized 

evaluation metrics, (2) publicly available data, 

and (3) released code and models. 

Close The demand for community-driven 

benchmark datasets, the development of 

standardized evaluation pipelines, and open-

source repositories is crucial to improve 

reproducibility and promote fair comparison 

among FS techniques. 

 

5. Future Directions  

With the increasing reliance of CD and 

prognosis on complex, high-dimensional data, 

FS proves to be crucial for the ever-advancing 

need for accuracy, scalability, and 

interpretability. Although great progress has 

been achieved, there still exists a set of potential 

research directions in the FW techniques which 

are not well-studied yet. Three of the most 

important research and development directions 

are described in the next 3 sub-sections. 

5.1 DL and FS Integration 

DL dominates, although its combination with 

FS is relatively rare in medical imaging and 

omics data analysis. Conventional FS techniques 

are typically partitioned from DL pipelines, and 

the feature representations generated by them are 

not guaranteed to be the most appropriate. Future 

work will consider embedding FS in DL 

architectures (e.g., as attention mechanisms, as 

sparsity-inducing layers, etc., or in autoencoder-
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based selection policies). Such an integration 

might reveal hierarchical and non-linear 

relationships even in complex cancer data, and 

thus increase predictability as well as 

interpretability of the model. Furthermore, 

learning paradigms that jointly optimize FS and 

DL may result in smaller and more generic 

models for clinical usage. 

 

5.2 Explainable AI and Interpretability 

Many of the ML and DL models are black-

box, which is another obstacle for translation 

into clinical practice. The FS techniques 

improving model interpretability and 

explainability are necessary for obtaining the 

trust of the medical experts. Prospective 

researches could concentrate on explainable AI 

(XAI)-based FS techniques, e.g., SHAP 

(SHapley Additive exPlanations) and LIME 

(Local Interpretable Model-agnostic 

Explanations) and integrated gradients for 

literature for ranking important features and the 

biological interpretation. Integrating FS with 

domain knowledge and visual analytics offers 

potential access to underlying disease 

mechanisms, enabling contributions to better-

informed management and patient-specific risk 

estimations. 

 

5.3 Federated and Privacy-Preserving FS 

Access to rich and diverse datasets is the key 

to training robust predictive models, but privacy 

considerations and data ownership laws conspire 

against sharing data between institutions. 

Federated learning (FL) is a promising paradigm 

for cooperative FS and model learning without 

exchanging raw data. In the future, federated FS 

algorithms that are able to perform selection 

over decentralized datasets without having 

access to the original samples should also be 

explored. We should be investigating approaches 

such as secure multiparty computation, 

differential privacy, and homomorphic 

encryption to support strenuous and compliant 

FS workflows across hospitals and between 

hospitals and research institutions. 

5.4 Real-Time and Adaptive FS Systems 

Real time and adaptive decision support is 

more and more crucial in CD, particularly where 

time is a significant factor such as point-of-care 

or intraoperative. Finally, current FS approaches 

frequently based on offline and static pipelines 

are not well suited for dynamic environments. 

The next-generation FS systems are also 

expected to have online learning ability to be 

able to evolve for streaming data, changing 

disease patterns, and patient-specific 

heterogeneity. We believe that there is a calling 

for research in building minimal, incremental FS 

algorithms that can learn and grow feature 

subsets incrementally without explicitly 

retraining the whole model. Adaptive FS-based 

frameworks of this type might also enhance 

models' generalizability to a new clinical context 

or novel cancer subtypes. 

5. Conclusions 

FS is still a fundamental component in the 

construction of accurate, interpretable, and 

efficient machine and DL models for CD and 

prediction. In this review, we have highlighted 

the continuum FS techniques—normal filter and 

wrapper until advanced hybrid and ensemble 

approaches—that have been shown to be 

powerful toward data from diverse cancer types. 

A number of reports on FS acknowledge that 

hybrid and ensemble FS approaches tend to yield 

better performance in comparison to other FS 

techniques but with significantly increased 

computational and algorithmic effort. 

Furthermore difficulties, i.e., small sample sizes, 

high-dimensional data, class imbalance, and lack 

of reproducibility, still remain in the domain. 

The review highlights the challenges and 

gaps within the area that deserve immediate 

attention: (1) linking FS techniques with 

biologically relevant knowledge to increase 

clinical utility of models; (2) identifying noise-

robust scalable algorithms to generalize better 

across datasets; and (3) standardization of 

benchmarking for promoting reproducibility and 

making the technique comparison process easier. 

Future work could further explore the 

development of interpretable FS frameworks, 

and utilize the recent progress in federated 

learning, synthetic data generation and 
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multimodal fusion to address the current 

limitations. Solving these challenges will help to 

achieve the next generation of FS techniques for 

early cancer diagnostics, predictive and 

personalized treatment planning, and on-the-fly 

clinical decision support systems. 
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