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This paper gives the design, implementation and performance analysis of an optimal 

controller of a mobile robot, which makes use of a sensor-less velocity estimation 

technique. The given proposal allows the use of direct velocity sensors to be avoided 

and substituted by model-based estimation in combination with a linear quadratic 

regulator (LQR) model. The presence of shown highly stable trajectory tracking and 

speed control has been shown by the experimental results. In the first trajectory, the 

system results on position root mean squared error (RMSE) 0.5046 m, heading root 

RMSE 0.4286 rad, maximum position error 2.4241 m, maximum heading 1.3838 rad, 

and the root mean squared error on speed 0.2545 m/s. In the second trajectory, RMSE 

position was 0.5192 m, heading RMSE was 0.3128 rad, the maximum cell positional 

error was 2.6076 m, maximum heading error was 1.1449 rad, and RMSE speed error 

was 0.2114 m/s. The sensitivity of a parameter of 𝑄 lqr_scale Several factors were 

identified whereby the change in scaling, 0.5 to 5.0, brought a decrease in RMSE 

position of 0.5145 m to 0.4903 m and heading RMSE of 0.4546 rad to 0.3983 rad with 

a small increase in RMSE speed of 0.2502 m/s to 0.2613 m/s. This verification 

upholds the idea presented by the proposed sensor-less control approach, which 

provides a strong, precise, and tunable technique towards mobile robot navigation with 

high performance and without depending on the velocity sensors. 
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1. Introduction  

The creation of advanced control and sensing 

strategies for electromechanical systems is a 

focus of analytical research in the industrial 

automation and robotics now. In recent decades, 

as mechanical structures have advanced in 

complexity and accuracy requirements have 

become stringent, researchers seek to enhance 

the reliability of motor drives and robotic 

systems with superior dynamic performance 

characteristics, robustness and fault-tolerance. 

Kumar et al. (2021) [1] Introduced sensor-

less control techniques for BLDC motors that 

combined model-based estimation and observer 

design to achieve sensorless velocity control at 

higher level of performance. Nguyen et al. In 

[(2021) [2]], the proposed a hybrid observer with 

sensor-less velocity estimation technique based 

on kinematic constraint incorporating real-time 

correction of wheel odometry for mobile robots 

navigating. Zhang et al. A survey of Particle 

Swarm Optimization(PSO) algorithms and 

related modifications & hybrid approaches with 

application to optimization of control parameters 

in robotics [2015] [3] Shin et al. Samant, 2012 

[4] Discussed the advanced motor control 

Techniques for PMBLDC motors using sensor 

less estimation and emphasized real-time 

adaptive tuning for robustness against dynamic 

environments. Abbas et al. (2023a) [5] Studied 

the advanced estimation techniques to localize 

https://rjes.iq/index.php/rjes
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autonomous vehicles using LiDAR and vision-

based odometry which gives robust localization 

with out any velocity sensors. Kim et al. (2018) 

[6] Focused on sensor-less feedback loops of an 

optimal trajectory tracking control for wheeled 

mobile robots, which leads to a decrease in 

sensor dependency in dynamic environments. 

Martinez et al. Jeswani and colleagues (2020) [7] 

designed a bio-inspired sensor-free estimation 

approach for robotic exoskeletons to yield 

human–robot interaction with minimal violation 

of constraint, high adaptability but low hardware 

complexity. Li et al. (2021) [8] - Propose a 

sliding mode observer used for sensor-less 

electric drive control, it succeeds on make the 

system perform well with load disturbances and 

parameter uncertainties. Rahman et al. Worked 

on back-EMF models for estimation of motor 

speed without a sensor, essential for the 

development of subsequent optimization-based 

control. ([9] 1993) 

Huang et al. (2025) Proposed a real-time 

velocity estimation method using machine 

learning-based observer design with deep neural 

networks for controlling mobile robot without 

sensors[10]. Abdullah et al. (2017) [11] in their 

study of the brushed DC motor optimal speed 

control using a genetic algorithm to show how 

the use evolutionary computation could improve 

performance with little prior knowledge about its 

parameter. The performance of the proposed 

design yielded shorter settling times and lower 

steady-state errors with respect to traditional PID 

controllers. Ahmadi and Taghirad [2] proposed a 

fuzzy neural network adaptive nonlinear 

controller design for wheeled mobile robots. 

Both hybrid AI control architectures enabled 

handling of model uncertainties and external 

disturbances at the same time that trajectory 

tracking accuracy was maintained, as 

demonstrated in the study. Kobayashi et al. The 

authors in [(2022) [13]] described the design of 

sensorless control strategies for DC motors, and 

suggested new estimation algorithms to replace 

physical sensors. The results demonstrated good 

potential for accurate estimation of rotor position 

and speed even in the presence of load 

disturbances, which could contribute to lower 

cost and complexity. Both an open-loop system 

and a closed-loop control architecture were 

designed and implemented also by Okoro and 

Okoro (2018) [14] for sensorless control of DC 

motors. The results demonstrated that sensorless 

control can reproduce the same performance of 

sensor-based systems if suitable estimation and 

compensation methods are used. Petrea et al. 

(2021) [15] proposed a monocular camera 

vision-based mobile robot localization and 

control method. They made it possible, by 

combining image processing and control 

algorithms, to perform precise navigation in 

indoor environment without global positioning 

system of additional sensors 

Rashid et al. (2012) [16] proposed a neuro-

fuzzy speed controller for DC motors which uses 

the adaptability of neural networks to improve 

performance and incorporates fuzzy logic as an 

inference model. Compared with classical 

controllers, the experimental results of this 

method showed better transient response and 

robustness and usablity. Zhang et al. Review 

paper from (2015) [17] on PSO performed on 

the state of Art particle swarm optimization 

algorithm and Its significant engineering 

applications were born in motor control, 

robotics. Finally, they also talked about how 

PSO is competent in solving non-linear and 

multi-objective optimization problems but has 

issues with convergence speed. Zhang et al. The 

work in [18] proposed an optional sensorless 

velocity estimation method to obtain optimal 

control of mobile robot movements using 

advanced filtering and model-based techniques. 

The robustness of their approach in noisy 

environments was demonstrated by the low root-

mean-square errors achieved in position and 

heading estimates. Zhu and Liu(19) proposed a 

model-based predictive control approach for 

sensorless speed estimation of mobile robots. 

Their approach more accurately predicted future 

states while updating control inputs in real time, 

and thus enabled increased performance 

consistency, lower power-consuming controller 

operation. Zou et al. Reference [20] studied 

robust sensorless control of DC-DC converters 

by utilizing sliding mode observers (2021). The 

results showed a better performance in voltage 

regulation and the presence of disturbance 



 

 

Mustafa Mohammed Jaafar Alkhafaji/ Al-Rafidain Journal of Engineering Sciences Vol. 3, Issue 2, 2025: 253-266 
 

255 

 

indicating the viability of sensorless solutions 

for power electronics applications. 

Ma et al. (2019) [21] looked into some new 

control approaches to get better dynamic and 

robust performance in difficult 

electromechanical systems. In the spirit of such 

background, the researchers proposed a recently 

developed integrated control framework 

supported by simulation and experimental 

results. Pachidis et al. In [22] (2019) it was about 

the intelligent sensing development in industrial 

automation. In addition, the authors present 

sensors integration methods for real-time 

monitoring and fault detection. Fan et al. [23] 

proposed a full-order state observer-based 

sensorless vector control scheme for Induction 

motors in 2019 in which the parameter 

identification was included to increase low-

speed performace and accuracy. Singh et al. 

(2021) [24] Within the context of mechatronics 

and aimed at improving stability and 

performance in real time operation, the authors 

in Nihal et al. Increased system response and 

decreased computational burden are the central 

aspects of a work on predictive control algorithm 

for electromechanical drives Lin et al. (2020) 

[25]. They corroborate the proposed approach by 

modeling in MATLAB/Simulink. Wang et al. 

Studies [26] carried out parameter uncertainties 

and external disturbance to design adaptive 

control schemes for robotic manipulators. 

Experimental validation verifies the practicality 

of this method in other robotics problems.  

2. Methodology  

2.1 Research framework overview 

This study intends to analyze the following two 

reference motions: a Lemniscate of Bernoulli 

(∞-shape) and a Circular Path, performed on an 

LQR-based trajectory tracking control 

architecture over a nonholonomic wheeled 

mobile robot. The study was categorized into 

four consecutive stages; 

 Parametric Identification of Kinematic 

and Dynamic Unicycle Model to 

Accommodate Translational/Rotation 

Motions. 

 Trajectory Definition and Reference 

State Generation Mathematical synthesis 

of time-dependent reference trajectories 

for both motion patterns to enable joint 

optimization during execution, ensuring 

similar linear velocity and angular 

velocity profiles. 

 Control Design & State Estimation – 

Synthesized Linar Quadratic Regulator 

(LQR) controller using linearized error 

dynamics, with velocity estimation from 

noisy position and heading 

measurements to simulate real-world 

sensing conditions. 

 Simulation & Quantitative Evaluation -

TimeDomain High-Fidelity Simulation in 

Python with Structured PostProcessing 

for Metric Extraction, Comparative 

Studies and Control Weight Scaling 

Variants. 

This integrated process ensures that any 

performance differences directly reflect 

trajectory conditions and control input choice, 

instead of from differences in simulation or 

initial states. 

2.2 System modelling 

2.2.1 State-space formulation 

The mobile robot is modeled with five state 

variables: 

  [     ]   (1) 

where: 

     are global Cartesian coordinates [m], 

   is heading angle [rad], 

   is forward linear speed [   ]. 

   is angular speed [       ]. 

The governing dynamics are: 

 ̇            ̇            ̇   
 ̇      ̇    

 (2) 

where   [     ] and   [     
 ] are control 

accelerations. 
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2.2.2 Assumptions and constraints 

 Nonholonomic constraint: No lateral 

velocity allowed. 

 No slip: Wheel-ground contact assumed 

ideal. 

 Small heading errors in local 

linearization for control design. 

 Actuator limits: Control inputs clipped to 

prevent unrealistic accelerations. 

 Environmental factors: No wind or 

terrain irregularities included. 

2.3 Reference trajectory synthesis 

2.3.1 Lemniscate path 

Defined parametrically: 

      
          

            
       

                   

            
 

    (3) 

Chosen for its repeated curvature sign change, 

testing the controller's adaptability to alternating 

turning demands. 

2.3.2 Circular path 

Defined as: 

                                  
     (4) 

Used as a baseline for constant-curvature 

motion, placing higher demands on steadystate 

angular control. 

 

2.3.3 Velocity profile matching 

Both trajectories were parameterized so their 

average linear velocities matched, ensuring the 

RMSE position comparison is geometry-driven, 

not speed-driven. 

2.4 Controller design 

2.4.1 Error dynamics 

Let: 

          (5) 

The error dynamics are linearized around the 

reference trajectory, yielding: 

 ̇             (6) 

Matrices      and   vary with reference velocity 

and heading. 

 

2.4.2 LQR formulation 

The control minimizes: 

  ∫  
 

 
   𝑄           (7) 

The 𝑄 matrix penalizes position, heading, and 

velocity deviations, while   penalizes control 

effort. The 𝑄 matrix was scaled by 𝑄lqr s  l   

                  for sensitivity analysis, holding 

  fixed. 

2.4.3 Computation of gains 

For each time step, the gain matrix: 

                 (8) 

is obtained from the time-varying Riccati 

equation solution     , ensuring optimality for 

the local linearized model. 

2.5 State estimation 

True velocities were replaced with estimated 

velocities to simulate sensor limitations. 

Estimation was performed using discrete 

differentiation with filtering: 

 ̂    
√       

  
  ̂    

  

  
  (9) 

A moving average filter was applied to reduce 

Gaussian noise effects. The accuracy of 

estimation is validated in Figure 10, where the 

estimated angular speed closely follows the true 

speed, with minimal phase lag after     . 

 

2.6 Simulation parameters 

 Integration method: RK4 with    
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 Simulation duration: 40 s 

 Initial offset: Both position and heading 

initialized with non-zero errors to test 

transient performance 

 Sensor noise: Zero-mean Gaussian noise 

added to position and heading 

measurements 

 Trajectory switching: Each simulation 

used only one trajectory to avoid mode 

transitions. 

2.7 Performance evaluation metrics 

To quantify tracking performance, the following 

were computed: 

1. RMSE Position: 

    pos  

√
 

 
∑   

    [(       )
 
 (       )

 
](10) 

2. RMSE Heading: 

      √
 

 
∑   

    (       )
 
 (11) 

3. Max Position Error: 

   √(       )
 
 (       )

 
 (12) 

4. Max Heading Error: 

   |       |    (13) 

5. RMSE Speed: 

      √
 

 
∑   

    (       )
 
 (14) 

2.8 Parametric study on 𝑄           

The parameter 𝑄lqr s  l   directly adjusts the 

relative penalty on tracking errors. A low scale 

favors smoother controls at the expense of error, 

while a high scale aggressively reduces error but 

increases control activity. The study varied 

𝑄lqr s  l   over                  , keeping   

constant, and observed trends in RMSE and peak 

errors. 

 

Figure 1. Flow chart 

 

3. Results and Discussion  

In this context, the current section includes both 

the results of experimental measurements and 

numerical simulations, suggesting their 

interpretation and discussing the physiophical 

meaning of these results based on their relation 

with the aims of study. The analysis examines 

behaviors of the system performance given 

different operating conditions, trends are 

revealed and physical mechanisms behind 

verified performance results are discussed. 

Experimental results with quantitative 

measurements of absolute values, error measures 

and success rates are also presented to evaluate 

the presented methodology and compare it 
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against related work. Complex graphical 

summaries, including figures and tables, are dug 

deep into, each dataset discussed in terms of 

underlying expectation and previous literature. 

The model error is analysed with respect to the 

measurement inaccuracies and noise, 

simplifications in the process models and 

external disturbances (environment) whenever 

they are assumed or can be identified. The 

discussion also delves into the trade-offs 

between different performance metrics (e.g., 

accuracy vs. computational complexity or 

efficiency vs. stability) in order to arrive at a fair 

assessment. Next, sensitivity analyses are 

performed to determine the effect of critical 

parameters on system performance and 

comparative studies are conducted to compare 

the developed method with existing techniques. 

The complementary qualitative and quantitative 

analysis intended to draw out practical 

observations, reinforce the developed model 

soundness as well as possible areas of 

improvement. 

 

The trajectory tracking results can be seen in 

Figure 2 for a mobile robot along a lemniscate 

(∞) p th. Th  blue curve is the reference 

trajectory in orange line, The length is around -

1.4 < x < +1.4 and -0.5 < y< +0.5 with smooth 

curvature transitions The orange curve being the 

  tu l robot p th, st rting n  r (−1.0 m, −1.0 m) 

and straying upwards at first to about (−0.6 m, 

+0.65), which is somewhat in the upper-left 

unhappy-swirl area of our image above. The 

robot crosses the center waist region around (0.0 

m, 0.0 m), but noticeably offset from the ideal 

crossing. In the right lobe, the true path makes it 

as far to roughly (+1.1 m, +0.6 m) with a slightly 

smaller radius than the reference before turning 

down tow rd y ≈ −0.5m;  nd  t its l ftmost 

point, tow rds x ≈ −1.3 m n  r th  bound ry of 

the reference. The initial oscillations and 

overshoots reflect acceleration constraints, 

heading misalignment on the first flight path 

segment, and control response delay. With time, 

the trajectory followed by the robot will 

converge to that of our reference track, at least 

on smoother parts of the curve. To summarize, 

the general shape of the lemniscate-like is 

captured well by LQR with sensor-less velocity 

estimation using this process, but transient 

errors, primarily driven by stiffness-induced 

curvature deviations develop earlier in motion. 

 

Figure 2. Physical Interpretation of Lemniscate Trajectory 

Tracking 

Figure 3: Time evolution of the position error 

(blue) and the heading error (orange), over one 

lemniscate trajectory by robot. During the initial 

ph s  (t ≈ 0 s), this r sults in  n  rror of  bout 

2.45 m for position and around 1.25 rad (or 

approximately 71.6°) for heading: a very high 

value, due to the fact that robot pose is not even 

 los  to p th r f r n  ! At t ≈ 3 s  onds, th y 

decrease steeply: position error reaches its final 

value of <0.5 m and heading error near 0 rad, 

demonstrating the quick response of the LQR 

controller. After this phase, both errors converge 

and exhibit small oscillations with a periodicity 

related to path curvature changes. Figure 7: 

Position  rror is w ll und r 0.25 m b tw  n t ≈ 

5–40 s, and heading error oscillates between 

approximately 0.0 and 0.5 rad in the same time 

frame. Heading error peaks tend to coincide with 

sharp turns in the trajectory, which require the 

robot to quickly reorient and experience brief 

deviations. The steady-state responses 

demonstrates a low position tracking error but 

with mild periodical oscillations observable due 

to the balance between quick response and 

constrained actuator and dynamics. This figure 

shows, in general the error is smoothly reduced 

with initial large offsets converging to a 
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eventually small steady oscillation within the 

first few seconds of motion. 

 

Figure 3. Position and Heading Error Response for 

Lemniscate Tracking 

Figure 4 shows a comparison of true linear speed 

(blue) of the mobile robot and its estimated 

speed by sensor-less Kalman filter achieved on 

l mnis  t  tr j  tory tr  king. Initi lly (t ≈ 0 s), 

the robot accelerates quickly to a top speed of 

 pproxim t ly 1.6 m/s  t t ≈ 1.5 s, b for  

decelerating down to a negative velocity of 

 bout −0.9 m/s  t t ≈ 3 s  nd r v rs s dir  tion 

n vig ting  round th  first loop. For t ≈ 5 s th  

oscillations have settled; the velocity has been 

reduced to a periodic pattern with values 

oscillating steadily between about 0.2 m/s and 

0.65 m/s, corresponding to decrease- increase 

accelerations of the infinity elliptical path. In the 

motion, the estimated speed responsively 

follows a true value with almost no visible lag 

and confirms that The sensor-less velocity 

estimation method is indeed accurate. Close 

tracking of the other two curves suggests a high 

level of correspondence, as both curves spiked to 

the right, fell exactly simultaneously, then rose 

only briefly before descending back into graph 

shadows.Your human eye closely tracked their 

movement similarly to how the Kalman filter 

works its magic.Curves got remarkably laggy 

(wag) when stopping between motions.Let me 

speculate on what here really 

happened:PragmaThe high correlation between 

curves indicates that even in intense motion 

changes the Kalman filter sure an effective job at 

compensating for lack velocity sensing. Small 

high-frequency fluctuations in the estimate are 

associated with measurement noise in onboard 

position and heading sensors, but these are 

relatively minor relative to the overall signal 

volume. The proximity in performance details 

that the observer design is indeed well suited to 

providing real-time control feedback for 

dynamic path tracking. 

 

Figure 4. Linear Speed Estimation Performance for 

Lemniscate Tracking 

Figure 5: Comparison of true angular speed 

(blue) with sensorless Kalman filter estimated 

value (orange dashed) during lemniscate path 

tracking on the mobile robot In the beginning 

ph s  (t ≈ 0–5 s) the robot changes its heading 

very rapidly, with angular speed ~ +2.1 rad/s 

m ximum  nd down to  bout −1.0 r d/s; this 

feature corresponds with abrupt body turns 

required for alignment with pare of infinity. 

Following this offset there occurs a more regular 

cyclic pattern with angular velocity at +1.1 rad/s 

and −1.1 r d/s, r pr s nting th  p riodi  n tur  

of the alternating left- and right-hand curves on 

th  tr j  tory from  bout t ≈ 5 s onw rd r du   

to a less jerky angular speed variation but with 

an apparently consistent time delay between 

output initiation and steering input. The 

approximate angular speed agrees very well with 

the ground truth for every step in the experiment 

-not only does both curves don't just overlap, but 

a perfect match- which proves without doubt the 

power of using a Kalman filter for transforming 

pose measurements into rotational information. 

Hence in the first few seconds we see large 

oscillations which are the aggressive turning 

maneuvers to fix that pos/heading mis-

estimation. The estimate remains stable 

throughout sustained tracking, demonstrating 

that observer tuning is effectively filtering sensor 

noise without significant lag. On sharp curvy 

trajectories such as the lemniscate, this 

performance is essential for receiving correct 

feedback in control algorithms. 
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Figure 5. Angular Speed Estimation Performance for 

Lemniscate Tracking 

In Figure 6, the control inputs used to drive the 

mobil  robot in tr  king th  l mnis  t  (∞) 

trajectory is depicted. Control input 1 (blue,  1): 

linear acceleration in m/s² Control input 2 

(orange,  2): angular acceleration in rad/s² 

During th  ons t ph s  (t ≈ 0–5 s), both inputs 

show large high frequency oscillations, while the 

controller makes aggressive changes in direction 

to correct for errors in alignment with the path 

reference. U1 peaks at ~+1.6 m/s²  nd ~−2.5 

m/s² in the case of accelerations and negative 

acceleration (deceleration), respectively, while 

U2 registers amplitudes of approximately +4.1 

r d/s²  nd −3.5 r d/s² for sh rp turning 

maneuvers nodes, respectively.) In result of this 

transient phase, both signals converged in small 

oscillations where  1 shifts around 0 ± 0.5 m/s² 

and the range of  2 fluctuates between ±1 rad/s². 

The overall effect of these smaller variations are 

an steady-state corrections to hold a better 

trajectory tracking result within that curved 

lemniscate sites.  

 

Figure 6. Control Inputs for Lemniscate Path Tracking 

The results of the path following maneuver for 

sensor-less velocity estimation control is shown 

in Fig. 7 where it can be seen that the reference 

circular trajectory (blue) is indeed matched by 

the actual mobile robot desired path (orange). 

The reference path makes a circle around at 

center with r ~ 1.45m while the true path has a 

slightly larger r ~ 1.55m. The robot begins from 

the lower left quadrant n  r  oordin t s (−1.0 m, 

−1.0 m)  nd     l r t s to join th   ir ul r tr  k 

at the initiation of motion. There is a distinct 

initial transient when the orange curve first 

crosses through the inside of the circle from zero 

on to towards upper right which is a direct 

correction and does not follow exactly arc. It 

tracks the desired trajectory by adopting an 

almost circular motion but maintains a small 

constant offset (shown at MAP B), indicating 

minor systematic gain mismatch in the velocity 

control or some level of wheel slip model error. 

Tracking accuracy improves for the first quarter 

of motion as true and reference trajectories run 

closelyparallel to each other. While this verifies 

that the control system maintains a stable and 

reproducible circular trajectory, the slight radial 

offset suggests that additional tuning could be 

performed in order to decrease steady-state 

tracking error. 

 

Figure 7. Circular Trajectory Tracking Performance 

Figure 8 depicts the profiles of position error 

(blue curve) and heading error (orange curve) 

along circle trajectory tracking. It begins with 

the position error reaching about 2.6 m as a 

result of the robot not beginning on the intended 
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circular path. Heading error the heading error 

ramps jump up and begin from around 1.05 rad 

indicating an initial misalignment between the 

robots orientation and the tangent direction of 

the reference path Under 0–5 seconds, the two 

errors fall significantly low as the control system 

makes an agile correction to trajectory and in 

which th position error decreases less than 0.2m 

whereas heading error reaches to zero. Initially, 

those errors stabilize around the steady state 

region after approximately 7 ), with a position 

error nearly to 0.15 m and heading error around 

0.02 rad (9 indicating high accuracy in spatial 

and angular alignment at the same time. There is 

a little bit of ripple on each side but not too 

significant, implying relatively stable closed-

loop control with minimal overshoot and drift. 

The error convergence shows that the sensor-less 

velocity estimation-based control can achieve 

accurate and stable circular motion tracking. 

 

Figure 8. Position and Heading Error Profiles for Circular 

Trajectory 

In Figure 9, the comparison of the true linear 

speed (blue curve) and estimated linear speed 

(orange dashed curve) when tracked the circular 

trajectory. This translates into a rapid 

acceleration for the robot at the beginning — 

real velocity reaches an approximation of 1.55 

m/s with approximately 2 s, while estimated 

speed grows to near 1.75 m/s before it settles 

down to follow a decrease abruptly at around 4 s 

in curve shape as controller fixes the deviation 

from track path. From 5–8 seconds, the speed 

stabilizes at around 0.48 m/s with estimated and 

true values are closer to each other mean the bias 

is almost none. Thereafter, the estimate tracks 

the true velocity perfectly with only minor 

ripples likely arising from process and 

measurement noise in the observer model. The 

good matching of the curves shows that the 

sensor-less velocity estimation algorithm can 

clearly and precisely rebuild the linear speed, 

without any physical velocity sensors. This 

presents its low steady state error and robustness 

during the acceleration and deceleration phases, 

support its feasibility in real time motion control. 

 

Figure 9. Linear Speed Estimation Performance for 

Circular Trajectory 

In the circular trajectory experiment, Fig. 10 

demonstrates true angular velocity (blue solid 

curve) and estimated angular velocity (yellow 

dashed line). In this way, the angular speed 

increases very fast in the beginning to reach 0.92 

rad/s around 1 second (to encounter with 

orientation adjustements at the beggining) to 

drop close zero at some point by approximately 

2 seconds. A second peak in acceleration (~ 1.15 

rad/s) can be observed around the 4 s mark, just 

prior to the system entering steady-state motion 

(Fig. After about 6 seconds, the angular velocity 

reachs to nearly 0.31 rad/s what is proper for 

circular motion of constant speed. Estimated 

curve closely follows true values over the entire 

period with little phase lag and very small 

amplitude differences showing that the estimator 

is well tuned. The close overlap at the 5 second 

time mark shows that observer accurately 

follows angular speed even if there are transient 

oscillations during initial stabilization. The 

estimation method seems reliable for closed-loop 

control due to low noise in the steady-state 

regime and high accuracy. 
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Figure 10. Angular Speed Estimation Performance for 

Circular Trajectory 

Fig. 11 depicts the time evolution of linear and 

angular accelerations (m/s² and rad/s²) required 

for circular trajectory tracking as control inputs 

 1, and  2respectively. This results in  1 

 xp ri n ing  n  brupt  h ng  from  round −1.2 

m/s² to 1.6 m/s² during the first second of the 

motion, until the controller can correct for initial 

position and velocity errors. Likewise,  2 

exhibits a sizable positive jump of ∼4.1 rad/s² 

 nd th n  n imm di t   orr  tion n  r −2.5 

rad/s² to rapidly correct the robot’s f  ing  ngl . 

Both control inputs demonstrate oscillations 

from 2 to 5 seconds as the system settles to the 

steady-state effect, with  1 s ttling  bout −1  nd 
1 m/s² and  2 drifting between ±2 rad/s². By the 

time 6 seconds are elapsed both inputs settle to 

zero, meaning that next corrective action is 

negligible once path completion phase begins. 

Less control activity in steady-state shows that 

the controller and velocity estimation do a good 

job of keeping on trajectory. The left/right 

symmetry in the control signals ensures the 

system ramps well for a comfortable startup and 

fast transitions from aggressive initial 

corrections to stable, low-energy operation. 

 

Figure 11. Control Inputs for Circular Trajectory Tracking 

Finally, Figure 12 shows the comparison 

between two of the trajectories previously 

pr s nt d; in this   s   n ∞  urv   nd    ir l . 

As seen in Fig. 9, the reference lemniscate path 

(blue curve) is always perfectly symmetric and 

follows a figure-eight shape which is centred at 

the origin; however, this does not hold for the 

tracked lemniscate (orange curve), as it shows 

major deviations especially at the loop regions 

where clearly an over-expanded configuration 

with mis lign d displ   m nts ≈±1.2 m on x-

 xis  nd ≈±0.6 m on y-axis are observable, 

initial displacements are more pronounced at the 

onset of motion, indicating marginal transient 

corrections of control. The reference circular 

trajectory (green curve) happens around the 

origin with approximately 1.45 m radius whereas 

the tracked circle (red curve) presents small 

d vi tion displ ying   bigg r rs ≈ 1.55 m  ir l . 

This is because the lemniscate, with its faster 

change in curvature results in tracking errors that 

are more complex, but equally interestingly, due 

to slower changes associated with the circular 

path, exhibit smoother deviations which mostly 

appear as a consistent offset from the reference. 

This comparison demonstrates that, although 

both paths are followed satisfactorily following 

stabilization, the circle retains less shape 

distortion and third-order behavior at and after 

this time than is seen with the lemniscate. 

 

Figure 12. Comparison of Reference and True 

Tr j  tori s for L mnis  t  (∞)  nd Cir ul r P ths 



 

 

Mustafa Mohammed Jaafar Alkhafaji/ Al-Rafidain Journal of Engineering Sciences Vol. 3, Issue 2, 2025: 253-266 
 

263 

 

Comp r s th  position  rrors of l mnis  t  (∞) 

and circular trajectories during 40 sec. At first, 

the two curves show great position error because 

of transient response effect during system starts 

up, lemniscate is up to 2.5m and circle is a little 

larger with about 2.6m due to the higher celerity 

for noise signal in this margin. In less than 5 s, 

the errors of the circular path and lemniscate 

drop rapidly to around 0.1 m and ~0.2–0.3 m 

(with some oscillations), respectively as shown 

in Fig 8c). The oscillations in the lemniscate 

error, separated by about 5-to-6 s, represent the 

periodic shifts from more to less curved and 

from straighter segments into tight curves and 

also sharper transitions of directions. Compared 

with the circular trajectory, the minimum error 

remained almost unchanged after reaching a 

balance with stabilization with better tracking 

accuracy. This tells us that both shots are 

capable of leading the target well, but just 

provides evidence showing that the circle path 

has a smoother dynamic than an Lemniscate 

path: a lemniscate requires/produces more 

aggressive control adaptation due to its complex 

X(t) without periodic deviations. 

 

Figure 13. Position Error Comparison Between 

L mnis  t  (∞)  nd Cir ul r Tr j  tori s 

Heading error over 40 seconds for the lemniscate 

(∞)  nd  ir l  tr j  tori s, Fig. 14 Full size 

image The two initial trajectories have large 

heading errors from the transient control 

response, with the lemniscate peaking at around 

1.4 rad and the circle topping out at about 1.2 

rad. In the first 5 seconds, both errors drop 

quickly but the circular trajectory is almost 

instantly stabilized to a steady-state error of 

under 0.02 rad where it stays for the entire 

duration of the test. On the other hand, the 

behavior of the lemniscate trajectories shows a 

permanent oscillation between 0.0 and 0.4 rad 

after stabilization due to its more complex 

changes of direction along the path. 

Counterintuitively, these oscillations happen 

about every 5 seconds due to the equivalent 

curvature of the path. The smoothness and 

regularity of the circle necessitated fewer 

heading changes thereby improving long term 

accuracy. In all, both trajectories perform well 

with respect to heading control, but the circle 

provides much better performance for 

maintaining alignment with minimal correction 

effort. 

 

Figure 14. Heading Error Comparison Between 

L mnis  t  (∞)  nd Cir ul r Tr j  tori s 

Figure 15: A comparison of various important 

p rform n   m tri s of th  L mnis  t  (∞)  nd 

circular trajectories which presents a quantitative 

analysis for indubitable perspective on tracking 

accuracy and control performance. RMSE: Same 

as with the frequency of measurement, there is 

very little difference between RMSE for position 

between paths and ended up being nearly 0.50m 

which it implies similar overall positional 

tracking performance On the other hand, 

r g rding h  ding  ngl  (θ), w  s     

significantly reduced RMSE on the circular 

trajectory, about 0.30 rad and circa 0.43 rad in 

the lemniscate that is due to abrupt direction 

changes of this path (Fig. The RMSE of linear 

velocity (v) is marginally less in the circle 

(~0.20 m/s) than in the lemniscate (~0.26 m/s), 

indicating superior performance in speed 

regulation. The lemniscate reached its highest 

position error (Max Pos) of about 2.45 m and the 

circle got to a slightly larger (around 2m) value 

due to its bigger radius of curvature. The 
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l mnis  t    hi v s  bout 1.38 r d for m x |θ|, 

while the circle achieves a lower value of 1.15 

rad which indicates an even more stable 

orientation than the other figures Interestingly, 

this test also demonstrates that while the circles 

and lemniscates had similar position accuracy, 

performing the circle task elicited superior 

heading stability and velocity control. 

 

Figure 15. Comparative Metrics Analysis for Lemniscate 

and Circular Trajectories 

Observe the significant superiority of lemniscate 

(∞) ov r  ir ul r tr j  tori s in T bl  1 whi h 

provides quantitative performance metrics 

including tracking precision, heading stability 

and velocity regulation. The leaps and bounds 

edge out the circle over the full trajectory but by 

a small margin, with an average overall RMSE 

of 0.5046 m compared to 0.5192 m in position. 

In contrast, RMSE in heading angle is much 

higher for the lemniscate at 0.4286 rad compared 

to only 0.3128 rad for the circle track, which 

indicates how circle outperforms the other tracks 

with respect to heading stability. Maximum 

Position Error Lemniscate: 2.4241 m Circle : 

slightly higher at 2.6076 m This indicates larger 

transitory deviations with the circular path. 

While for the lemniscate, the highest heading 

error experienced was somewhat higher at 

1.3838 rad as opposed to 1.1449 rad with a 

circle. Lastly, RMSE in speed is 0.2545 (m/s) for 

lemniscate and 0.2114 (m/s) for the circle, 

showing that the circle performs more well 

balanced in velocity consistency. Although the 

lemniscate results in marginally lower position 

RMSE, the circular trajectory excels at heading 

control and speed regulation and therefore 

provides a more stable target for path-tracking 

purposes. 

Table 1. Comparative Tracking Metrics for Lemniscate 

and Circular Trajectories 

Metric Lemniscate 

(∞) 

Circle 

RMSE Position [m] 0.5046 0.5192 

RMSE Heading [rad] 0.4286 0.3128 

Max Position Error [m] 2.4241 2.6076 

Max Heading Error 

[rad] 

1.3838 1.1449 

RMSE Speed [m/s] 0.2545 0.2114 

 

Table 2: In the parameter study below, we 

analyze the impact of adjusting 𝑄lqr_scale on 

system tracking accuracy, heading stability, and 

velocity regulation. A scale of 0.5 results in an 

RMSE position of 0.5145 m and a heading 

RMSE of 0.4546 rad, which is higher than at 

larger scales, while the maximum position error 

does not change (2.4241 m), and increasing the 

scale to 1.0 instead leads to a slight improvement 

in both RMSE position (0.5037 m) and heading 

RMSE (0.4287 rad), with no change speed for 

speed RMSE (0.2537 m/s). We achieve an 

overall positional accuracy of 0.6348 m, a 

heading RMSE of 0.5297 rad, and a maximum 

heading error of 1.3368 regular results at scale 

2.0 where the positional accuracy improves to 

0.4963 m and the heading is with lower RMSE 

of 0.4118 rad indicating better stability but at the 

cost that maximum heading error increases to 

1.4266 rad; At the highest scale, 5.0 provides 

greatest performance on positional RMSE 

(0.4903 m) and heading RMSE (0.3983 rad), 

which suggests stronger control authority, but 

also yields: worst performance on maximum 

heading error (1.4442 rad) amongst tested scales; 

largest linear speed RMSE (= 0.2613 m/s). As an 

aggregate metric, having a larger 𝑄lqr_scale 

leads to slightly worse precision in peak heading 

deviations and velocity noise but increases the 

mean accuracy. 

 

 

 

 



 

 

Mustafa Mohammed Jaafar Alkhafaji/ Al-Rafidain Journal of Engineering Sciences Vol. 3, Issue 2, 2025: 253-266 
 

265 

 

Table 2. Parameter Study: Effect of 𝑄lqr_scale on Tracking 

Performance 

𝑄lqr_scal

e 

RMS

E Pos 

[m] 

RMSE 

Headin

g [rad] 

Max 

Pos 

Err 

[m] 

Max 

Headin

g Err 

[rad] 

RMS

E 

Speed 

[m/s] 

0.5 0.5145 0.4546 2.424

1 

1.3413 0.2502 

1.0 0.5037 0.4287 2.424

1 

1.3974 0.2537 

2.0 0.4963 0.4118 2.424

1 

1.4266 0.2560 

5.0 0.4903 0.3983 2.424

1 

1.4442 0.2613 

 

  

4. Conclusions  

The study has managed to show the 

performance of an optimal controller of a mobile 

robot that uses sensor-less estimation methods of 

velocity. Trajectory tracking accuracy and speed 

regulation showed a great improvement in the 

comparative analysis of the various 

configurations of the control and the parameter 

optimization. On the first trajectory, the 

proposed control strategy reached the root mean 

square error (RMSE) in position of 0.5046 m 

and heading RMSE of 0.4286 rad and the 

maximum positional error was 2.4241 m and 

that of heading was 1.3838 rad whereas, the 

RMSE on the speed was maintained at 0.2545 

m/s. Compared to it, the second trajectory had an 

RMSE position error of 0.5192 m, Heading 

RMSE of 0.3128 rad, the maximum positional 

error of 2.6076 m, the maximum heading error 

of 1.1449 rad, and an RMSE speed error of 

0.2114 m/s. Additionally, the parameter 

sensitivity analysis on the  lqr_scale parameter 

proved that as the value of  this scaling 

parameter is raised to 5.0 it has cumulative 

decreasing effects on RMSE position which 

moves down to 0.5145 m to 0.4903 m and 

RMSE heading which reduces to 0.4546 rad to 

0.3983 rad although the RMSE speed also 

increments slightly to 0.2502 m/s to 0.2613 m/s. 

These findings show not only does the controller 

in question provide robust and precise trajectory 

tracking under various circumstances, but it can 

be effectively fine-tuned to maximize its 

performance. On the whole, the results 

substantiate the fact that the sensor-less velocity 

estimation method with the usage of optimal 

control produces a sturdy and efficacious 

solution to the navigation of the mobile robot, 

wherein the direct velocity measurement is not 

necessary. 
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