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The solitary wave solutions of the quadratic-cubic law and Kerr-Law nonlinearity of 

the resonant nonlinear Schrödinger's Equation are investigated in this study. The 

solitary wave solutions of the resonant nonlinear Schrödinger's equations are 

investigated using the well-known extended simple equation method (ESEM). The 

field of Soliton in nonlinear fiber optics is where these equations are mainly 

investigated. We have obtained a new dark-bright, bell-shaped, periodic, unique, and 

periodic Soliton. 
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1. Introduction 

The NLSE, or Nonlinear Schrödinger 
equation, is highly relevant since it may 
be applied to a wide range of domains. It 

is useful in the explanation of the 
propagation of light in nonlinear optical 
fibers, Bose-Einstein condensates, and 
plasmas. Furthermore, it is essential to 

https://rjes.iq/index.php/rjes


Anwar Ja'afar Mohamad Jawad, Anjan Biswas/ Al-Rafidain Journal of Engineering Sciences Vol. 2 , Issue 1  , 2024, 43-50 

44 
 

comprehending phenomena in quantum 
mechanics, mathematical biology, nano 
optical fibers, superconductivity, and 
many other domains. The widespread 
application of nonlinear Schrödinger 
type models has helped both the 
development of all-optical, ultra-fast 
switching systems and the research of 
long-distance optical communications. 
One of the inventions that had the 
biggest influence was the use of Soliton 
in optical fibers for digital information 
transmission [1–21]. 

This paper's primary objective is 
obtained the solitary wave solutions of 
the resonant nonlinear Schrödinger's 
equations using the well-known 
extended simple equation method 
(ESEM). 

2. The Governing Resonant NLSE  
 

Consider the resonant nonlinear 
Schrodinger equation, as [1]: 

             
  | |  

| |
       (| | )                                                                           

                                                                          (1) 

In Eq. (1), the function   represents a 
complex-valued function defining the 
profile of the complex wave. The variable 
x corresponds to the non-dimensional 
distance along the fiber, and t represents 
the time dimension. In Eq. (1), β and γ is 
the coefficient of nonlinear terms. The 
group velocity dispersion is denoted by 
the symbol α in Eq. (1). This paper will 
obtain soliton solutions to Eq. (1) for 
different types law of nonlinearities 
using the extended simple equation 
method. 

3. Methodology of the Extended 
Simple Equation Method 
(ESEM) 
 

In this section, the extended form of the 
Simple Equation Method (ESEM) is 

introduced to obtain the traveling wave 
solutions [1]. The nonlinear evolution 
equation (NLEE) can be written, as 

 (                        )                                                

                                                                          (2) 

Here    (   ) denotes a function of 
the variables x and t in space and time, 
respectively. 

Step 1: Consider the following wave 
form  (   ) in Eq. (1) is a complex,  

          (   )    ( )     (   )                         (3) 

Where             , and the phase  
 (   )              ,  ( ) is the 
amplitude component of the wave and   
is its speed. p is the soliton frequency;   
is its wavenumber and     is the phase 
constant. 

The conversion of Eq. (2) into the ODE is 
given below:  

 (                   )                      (4) 

Step 2: Considering the form of the 
solution for Eq. (4): 

        ( )   ∑     
 ( )

   
                           (5) 

Here,    is real constant.  

Step 3: Find the positive integer N 
appeared in Eq. (5) by employing the 
balance rule between Eq. (4)’s non-linear 
terms and the highest-order derivative.  

Step 4: Suppose that f satisfies the 
following differential equation:  

   ( )        ( )     , ( )-          (6)  

where          are arbitrary constants 

Step 5: For different values of    , the 
solutions of Eq. (6) are given below: 

When       
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 ( )  
      (    )

        (    ) ,     ,                   (7) 

 ( )   
      (    )

        (    ) ,                     (8) 

When       

 ( )  
√       (√     (    ))

   
 ,       ,                                

                                                                        (9) 

 ( )  
√         (√      (    ))

   
 , 

      ,                                                  (10) 

The general solution of Eq. (6) is 

 ( )  

√        
    (

 

 
√        

  (    ))   

    
 ,         

  and      ,              (11) 

 ( )  
 √        

    (
 

 
√        

  (    ))   

    
 ,         

  and      ,                   (12) 

Step 6: Inserting Eq. (5) with Eq. (6) in 
Eq. (4) and equating the coefficients of 
powers of    to zero, the result is a 
system of equations. The set of 
equations is solved and the value of 

constant parameters have been 
obtained. By carrying these constant 
values and the  ( ) values in Eq. (5), the 
solution of Eq. (2) is achieved.

 
4. Travelling wave solution 

 
From Eq. (3), the following equations 
can be obtained: 

        ,          -                        (13) 

       ,          -                          (14) 

        ,                  -    (15) 

Equation (1) can be decomposing into 
real and imaginary parts yields a pair of 
relations. The real and imaginary parts 
of Eq. (1) respectively are: 

    (| | )     (   )    
,  (   )   -                               (16) 

     (   )                                     (17) 

Application of Extended Simple 
Equation Method (ESEM) 

In this section the Extended Simple 
Equation Method (ESEM) is applied to 
solve different types of nonlinearities: 
 

4.1  Kerr law nonlinearity 

For the Kerr law nonlinearity,  ( )    . 
In this case, Eq. (16) simplifies to 
        (   )    ,  (   )  
 -                                                      (18) 
In order to find the values of N, apply 
the homogeneous balance principle to 
the Eq. (18). By balancing u ′′ and    , 
N+2= 3N, then N = 1. Thus  ( ) has the 
form that is given below:  

  ( )   
   

 ( )
       ( )                                          

                                                                      (19) 

   ( )  0 
      

   
      

 
       

                 
 1                      (20) 

    ( )  0
    

     

   
         

   

(  
        )

    

 
 (         

      )    (        
 )  

          
     

     
 1                     (21) 

By using Eq. (19) and Eq. (6) in Eq. (18) 
to get the following equation: 

   0
  

  

  
    

  
  

  
    

  
  

 
 

    
    

 
            

  

(         
 )          
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   1     (   ) 0

    
     

  
 

         

  
 (  

        )
    

 
 

(               )    (      

  
 )            

     
     

 1  

,  (   )   - 0
   

 
       1                                                                                                                      

                                                                     (22) 
Set of Equations is obtained for different 
orders of      ,                    

{    
      (   )    

 } 
   

  
    

*  ,      -     (   )     + 
   

      

{  [           
 ]     (  

 )[(  
        )]  ,  (   )  

 -} 
   

 
     

  [           
 ]     (  

 ),(               )-  ,  (   )  
 -        
{   (         

 )     (  

 )(        
 )  ,  (   )  

 -}         

 *          (   )     +     
     

{    
     (   )   

 }   
                                                                                             

                                                                     (23) 
 
Constant values of      ,   ,   ,   ,   ,   , 
are obtained for the following cases: 
Case I:  
      
Then : 

     ,     ,           √
 (   )

 
 ,  

  (    
    )(   ) 

                                 

  ( )         √
 (   )

 

    
  (    )

      
  (    )  

        

,     ,                                               (24)                                         

  ( )  

       √
 (   )

 
( 

    
  (    )

      
  (    ))       , 

                                                        (25)                                   

     : 

          (   )   , and the phase  

     (    
    )(   )          (26) 

Case II: 
        
Family I: 

          √
  (   ) 

 
   ,      , 

          √
 (   )

 
      ,        

  -(   )    

  ( )      √  (   ) 

 
 0     .√     (  

  )/       .√     (    )/1  
         ,     

      ,                                                  (27) 

  ( )       √  (   ) 

 
 0      .√     (  

  )/        .√     (    )/1  
     ,     

                                                         (28) 

     :          (   )   , and the 
phase       ,          -(  
 )                                                                (29) 

Family II: 

          √
  (   ) 

 
   ,      , , 

           √
 (   )

 
  

    ,           -(   )    
then 

  ( )     √
  (   ) 

 
 0     .√     (  

  )/       .√     (    )/1  
         ,      

      ,                                                  (30) 

  ( )      √
  (   ) 

 
 0      .√     (  

  )/        .√     (    )/1  
     ,       

                                                          (31) 

     :          (   )   , and the 
phase       ,           -(  
 )                                                                (32) 
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Case III 

     ,             √
(   )

  
 , 

          √
 (   )

 
 , 

    
    

√ 
√ (   )  (  

 ) {  (        
 )    }  

 
Then:  

  ( )       √
(   )

  
,         ( )-   

                                              

                                                                     (33) 

Where: 

 ( )  

√        
    (

 

 
√        

  (    ))   

    
 

,         
  and      ,                     (34) 

 ( )  
 √        

    (
 

 
√        

  (    ))   

    
 

,         
  and      ,                     (35) 

         (   )   , and the phase  

           ,      
    

√ 
√ (   )  

(   ) {  (        
 )    }        (36) 

Quadratic-cubic law 

The general form can be written as  

 ( )    √       . In this case, Eq. (16) 
simplifies to: 

   ,   
      

  -    (   )    
,  (   )   -                               (37) 
In order to find the values of N, apply 
the homogeneous balance principle to 
the Eq. (37). By balancing u ′′ and    , 
N+2= 3N, then N = 1. Thus Eq. (5) has 
the form that is given below:  

 ( )   
   

 ( )
       ( )                                       

                                                                     (38) 
By using Eq. (38) and Eq. (6) in Eq. (37) 
to get the following equation: 
 

   0
  

  

      
   

 
          

             
   1      0
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Set of Equations is obtained for different orders of      ,                    
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    (   )}         
*                      (   )     +       

{           [           
 ]     (   )(  

        )  ,  (   )   -}       

   [         
 ]      [           

 ]     (   )(               )  
,  (   )   -        

{   ,    -      [(         
 ) ]     (   )[(        

 )]  ,  (   )  
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{       
     (   )   

 }   0                                                                                                 (40) 

 
Constant values of      ,   ,   ,   ,   ,   , 
are obtained for the following cases: 
Case I:  
      
Then : 

     ,     ,           √
 (   )

 
 , 

  (    
    )(   ), 
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  and      ,                      (49) 

    

 ( )  
 √        

    (
 

 
√        

  (    ))   

    
 

,         
  and      ,                      (50) 

         (   )   , and the phase  
           , 

5. Conclusion  
Using the expanded version of simple 
equation method, new exact solitary 
wave solutions for resonant nonlinear 
Schrödinger's equation are effectively 
generated in this study. Certain 
solutions are shown graphically by 
assigning specific values to the arbitrary 
parameters and arbitrary constants. 
Periodic bell-shaped, dark-bright, 
unique, and periodic Solitons are 
recovered. These answers serve as a 
roadmap for comprehending nonlinear 
physical processes. The computational 
work confirms the suggested method's 
ease of use and simplicity. The various 
models that arise in mathematics and 
physics can likewise be used with this 
methodology. 
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