Al-Rafidain Journal of Engineering Sciences Vol. 1 Issue (1), 2023: 09-23

Al-Rafidain Journal of Engineering

Sciences

Journal homepage https:/rjes.ig/index.php/rjes

Using JavaScript on 5G networks to improve real-time communication

through WebRTC

Ageel Mahmood Jawad

Al-Rafidain University College, Medical instrumentation Techniques Engineering Faculty Member, Baghdad, Iraq,10064,
Field: Electrical, Electronic and Systems Engineering

Email: ageel.jawad@ruc.edu.ig
ORCID No. :0000-0003-1671-7607
Mobile Number: +9647729971993

ARTICLE INFO

ABSTRACT

Article history:

Received 7 August 2023
Revised , 7 August 2023
Accepted , 21 August 2023
Auvailable online 21 August 2023
Keywords:

JavaScript

5G Networks

WebRTC

Real-Time Communication
Latency Reduction
High Bandwidth.

The introduction of 5G networks has heralded a new era of connectivity marked by
record-breaking download speeds and near-zero latency. This essay explains how
JavaScript may be used to take advantage of 5G networks' hefty boost to WebRTC's
real-time communication capabilities. Web Real-Time Communication (WebRTC) has
long been the platform of choice for developers aiming to build serverless, real-time
communication apps on the web. WebRTC allows users to directly transfer audio, video,
and general data between users, eliminating the need for any middleware. However,
delays and lost connections plagued previous network generations, creating less-than-
ideal user experiences.

The arrival of 5G presents a golden chance to rethink WebRTC's potential applications.
Developers may build communication solutions that are more responsive and robust
than ever before by making use of 5G's high bandwidth, low latency, and better
dependability. Key methods and code patterns in JavaScript are outlined for maximizing
5G's potential in WebRTC.

We examine the benefits of adopting 5G as the backbone for WebRTC apps, including
faster connection times, higher quality video, and more data throughput. We also
provide empirical data that shows considerable improvements in real-time video and
audio communications concerning delay and buffering.

Together, JavaScript, 5G, and WebRTC form a formidable trinity, poised to transform
the state of the art in real-time communication completely. As 5G networks become
more widespread, organizations and developers should be ready to take advantage of
them by making communication apps that are quick and efficient but also immersive
and seamless.

1. Introduction

(WebRTC), enabled by the adaptability of
JavaScript, heralds the beginning of yet another

One of the most defining features of human
development is the incessant quest for more
sophisticated and reliable means of
communication. The ability to communicate
and work together over great distances has been
greatly facilitated by technological
developments beginning with the telegraph and
continuing through the advent of the internet
and mobile communication. The advent of 5G
networks and Web Real-Time Communication

Corresponding author.
E-mail address: ageel.jawad@ruc.edu.iq

revolutionary step forward in communication
technology, which is now here [1]

There is no denying the breakneck pace at which
technology advances and 5G networks are at the
heart of this transformation. According to the
latest estimates [2], there will be speeds up to
one hundred times quicker on 5G than on 4G,
with latency periods as low as one millisecond
[3]. The potential for real-time application

This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/

mailto:aqeel.jawad@ruc.edu.iq
https://creativecommons.org/licenses/by-sa/4.0/
https://rjes.iq/index.php/rjes
mailto:aqeel.jawad@ruc.edu.iq

Ageel Mahmood Jawad/ Al-Rafidain Journal of Engineering Sciences Vol .1 Issue (1), 2023: 8-23

delivery is greatly enhanced by increased speed
and decreased latency [4].

WebRTC is one of the many applications poised
to flourish with the advent of 5G. WebRTC is an
open-source project that facilitates peer-to-peer
real-time communication via simple application
programming interfaces (APIs) for web and
mobile apps [5]. Web Real-Time
Communications (WebRTC) has grown in
popularity since it eliminates the need for
servers to mediate communications between
users. Despite its resilience and adaptability,
WebRTC apps' user experience may need to be
improved by network-related difficulties,
including latency and sporadic connection,
especially in older network generations [6].
The game-changing potential of 5G networks
becomes apparent here. WebRTC applications
benefit greatly from 5G networks because of
their low latency, high dependability, and
unparalleled speeds. If these network features
are used to their full potential, users' experiences
of real-time interaction may be substantially
enhanced. The difficulty rests in figuring out
how to combine these technologies most
efficiently [7].

JavaScript is the crucial component of this
integration. JavaScript, one of the most popular
programming languages, is highly suitable for
creating WebRTC apps that use 5G capabilities
because of its inherent adaptability and
versatility [8]. The functional, event-driven
nature of JavaScript makes it an ideal choice for
WebRTC applications due to the high volume
and velocity of data being sent in real-time.
Also, being the web language, JavaScript is
crucial in making browsers and mobile
applications capable of running the many
features of WebRTC [9].

Consequently, this piece aims to go into the
intersection of these three components:
JavaScript, 5G networks, and WebRTC. Our
goal is to talk about how to improve the speed
and user experience of WebRTC-based real-
time communication using JavaScript to use the
capabilities of 5G [10].

In the sections below, we will go down the
specific JavaScript techniques and coding
patterns that will allow you to use 5G's full
potential in WebRTC. The time it takes to

establish a connection, the quality of media
delivered, and the amount of data transferred are
all things that can be much improved with 5G,
and we will go through how that is possible. We
will also provide practical proof to support our
claims, showing how 5G networks drastically
cut down on delay and buffering for live video
and audio transmissions.

The combination of JavaScript, 5G, and
WebRTC constitutes a powerful force that has
the potential to alter the face of real-time
communication radically. As 5G rolls out more
widely, companies and consumers will need to
be ready to take advantage of the new
technology, ensuring that their communication
tools are quick and efficient and immersive and
easily integrated into their digital lives.2.

1.1. Aim of the work

The major goal of this article is to investigate
how JavaScript, 5G networks, and WebRTC
overlap and to explain how these technologies
might be combined to provide far superior
synchronous interactions. Now more than ever,
instantaneous communication tools are
indispensable in many fields, from casual chats
to formal conferences, healthcare, and distance
education. For this reason, it is crucial to use
sophisticated network features [11].

In particular, we want to accomplish the
following:

1. talk about how 5G networks may be a huge
improvement over the present real-time
communication infrastructure by talking about
how its high-speed, low-latency qualities can
greatly increase the quality and dependability of
real-time communication.

2. To understand how 5G and WebRTC might
be used together, it is necessary to go into the
nitty-gritty details of JavaScript. This article
will show JavaScript developers how to use 5G
by modifying their code with concrete examples
and helpful hints.

3. Emphasize how 5G and WebRTC can work
with JavaScript to improve real-time
communication utilizing 5G. We aim to shed
light on the interplay between these three
technologies and show how their convergence

10

Ageel Mahmood Jawad/ Al-Rafidain Journal of Engineering Sciences Vol .1 Issue (1), 2023: 8-23

might provide robust,
communication tools.

4. Argue persuasively, with evidence, for the
benefits of integrating JavaScript, 5G, and
WebRTC, offering concrete case examples that
show substantial improvements to the
performance of real-time communication.
Through this article, we want to let readers fully
appreciate the synergistic power of JavaScript,
5G, and WebRTC. With this information in
hand, firms and developers should be able to
create cutting-edge communication systems that
can adapt to the changing needs of the modern
digital world.

high-performance

1.2. Problem Statement

Real-time communication technologies have
seen a sharp increase in demand owing to the
growth of online education, telemedicine, and
social networking. WebRTC has been a major
participant among the many technologies that
provide real-time communication since it allows
for smooth audio, video, and general data
sharing between peers. However, these forms of
communication are only as efficient as the
underlying network architecture allows them.
Although widespread and trustworthy, the
current generation of 4G networks has several
serious areas for improvement when supporting
real-time communication technologies like
WebRTC. Problems with latency, spotty
connection, and slow data rates are common
symptoms of these difficulties. The effects of
these obstacles are manifested in
communication apps as lost calls, delayed video
feeds, and less-than-ideal user experiences
generally [12].

Another significant area for improvement in
implementing real-time communication
technology is the programming paradigms
required to do so. Concurrent connection
management, session state maintenance, and
dynamic data flow may all be challenging. Since
JavaScript is the web's native language and is
widely used for building WebRTC applications,
fixing these problems within the JavaScript
ecosystem is crucial.

Recently introduced 5G networks provide
solutions to network-related problems by vastly

improving upon the capabilities of 4G in terms
of speed and latency. To fully use 5G's promise,
however, knowing how to adapt real-time
communication technologies is essential. We
need more than 5G networks and use them to
their full potential [13], [14].

Therefore, there are two main issues at play
here. The first question is how the robust
capabilities of 5G networks may be used to
overcome the constraints of the current real-time
communication setup effectively. Moreover,
secondly, how can we use JavaScript to build
WebRTC apps that make the most of 5G's
advantages?

This article seeks to answer these issues and
provide developers and organizations with
concrete ideas to improve the performance and
reliability of their real-time communication
services.

2. Literature Review

Research into real-time communication
technologies, their incorporation into
preexisting network architectures, and the
overall role of programming languages like
JavaScript in enabling such interactions have
exploded in recent years. This article
summarizes these academic efforts by shedding
light on where we have come from and where
we are going with this issue.

WebRTC was first introduced by [15], who
emphasized its revolutionary potential by
showing how it may provide browser-to-
browser applications like telephony, video
conferencing, and peer-to-peer file sharing
without additional plugins. Its decentralized
nature and use of JavaScript and APIs for in-app
messaging were emphasized. Notes that even on
4G and previous networks, network
irregularities and latencies may limit WebRTC's
effectiveness and negatively impact the user
experience [16].

The scientific community is quite excited about
the potential of 5G networks. State by [17] that
5G is an improvement over its predecessor and
a revolutionary advance since it introduces
whole new design paradigms and uses. Key
benefits such as increased data speeds, ultra-
reliable communication, and widespread device

11

Ageel Mahmood Jawad/ Al-Rafidain Journal of Engineering Sciences Vol .1 Issue (1), 2023: 8-23

connection were emphasized. Further
investigation into this possible improvement to
communication technology is provided by [18],
who emphasize that 5G may be the silver bullet
for many problems plaguing real-time
applications by reducing or eliminating latency
and connection disruptions.

The potential of 5G, however, is not easily
tapped. According to [19], the shift from 4G to
5G is not just about speed but also about
building apps that can make the most of the
increased bandwidth and responsiveness.
JavaScript plays a crucial function in this
context. According to [20], JavaScript has
progressed from a simple scripting language
into a powerful instrument that can handle
complex jobs like real-time communication.
Because of its asynchronous nature and
compatibility with current frameworks and
libraries, it is well suited to handling real-time
data flows.

Works like those by [21] offer a crucial link
between JavaScript and WebRTC. They
explained how web applications might benefit
from real-time capabilities thanks to
JavaScript's support for WebRTC APIs.
However, the difficulty is in adapting this to the
characteristics of 5G. Recent studies by [22]
illuminated the various solutions developers
may use to use the 5G infrastructure,
emphasizing asynchronous processes, good
error handling, and adaptive streaming.

While 5G promises unprecedented prospects
[23], point out that it poses issues regarding
energy usage and device compatibility.
Therefore, as firms and developers move
towards this integration, a comprehensive grasp
of the advantages and disadvantages is essential.
The literature often emphasizes the mutual
benefits of 5G networks, WebRTC, and
JavaScript. Each part is useful in its own right,
but when combined, it might change the face of
real-time communication forever. The
developer community falls under the burden of
navigating the complexity of this convergence,
optimizing the code and the underlying
infrastructure for fully immersive and seamless
communication experiences.

3. Methodology

This article looks at how real-time
communication apps might benefit from the
combination of JavaScript, 5G networks, and
WebRTC. Given the uncharted territory of the
issue and the difficulty of our study, we have
employed a multi-pronged approach.

3.1. Empirical Approach

Our research relied heavily on an empirical
strategy since this was the only way to provide
applicable, real-world discoveries. Using this
technique, we could go beyond mere conjecture
and put our hypotheses about the efficacy of
WebRTC apps on 4G and 5G networks to the
test. Using this method, we successfully
simulated real-world network circumstances in
several studies. Metrics for WebRTC
application performance under these settings
provided useful information about the
differences between 4G and 5G networks. We
prioritized data from real-world deployments to
ensure our conclusions were grounded in reality,
not just theory [24].

3.2. Experiment Design

We built two completely separate but otherwise
similar WebRTC apps for the sake of this
article. JavaScript, a robust and versatile
programming language, was used extensively in
creating both apps. One program was designed
to function well with 4G networks, while the
other uses 5G networks' superior speed and
latency. Essential aspects for evaluating the
efficacy of WebRTC applications were
provided, including real-time audio, video, and
general data transfer.

Latency, data rate, connection setup time, and
transmitted media quality were all essential
indicators of performance. These KPIs were
selected due to their obvious relevance to both
the quality of the user experience and the
general efficiency of the app [25].

The applications were used to simulate real-
world settings as closely as possible. We used
4G and 5G networks with 20 concurrent users
accessing the apps. Multiple tests were
conducted to smooth out any hiccups and

12

Ageel Mahmood Jawad/ Al-Rafidain Journal of Engineering Sciences Vol .1 Issue (1), 2023: 8-23

guarantee accurate results. The goal of
recording and analysing this data was to
determine how much of a performance
improvement may be attributed to 5G.

3.3. Exploratory Approach

The article's suggested exploratory method was
a crucial part of our study since it allowed us to
explore the emerging topic of combining
JavaScript, 5G, and WebRTC. To better
understand the possibilities, obstacles, and
possible tactics in this emerging field, we
conducted semi-structured interviews with
professionals in the field [26]. To better
understand the bigger picture and forecast future
trends, we complemented empirical data with
insights from real-world experts. This
comprehensive view improves our present
comprehension and prepares the path for future
research on 5G networked real-time
communication with JavaScript.

3.4. Expert Interviews

Semi-structured interviews with specialists in
the field helped us get qualitative insight into the
topic at hand. Experts in JavaScript, 5G network
engineering, and real-time communication
technologies were on the panel.

We conducted in-depth interviews to understand
better the advantages and disadvantages of 5G
networks for JavaScript-based WebRTC apps.
Techniques for optimizing JavaScript for 5G,
anticipated problems in harnessing 5G's
capabilities, and the projected effect on user
experience were only a few issues covered in
depth throughout the discussions [25].

3.5. Comparative Approach

The impact of several JavaScript paradigms on
the performance of WebRTC applications in a
5G setting was investigated using a comparative
methodology. In order to evaluate the relative
merits of several JavaScript approaches for use
in real-time communication, we developed and
tested many variants of the same WebRTC
application using various implementations of
concepts like Promises, Async/Await, and
Callbacks. The results of this study provide light

on the varying effects of various strategies on
application performance, offering a road map
for developers to optimize JavaScript-based
WebRTC apps for 5G networks efficiently [14].
Utilizing a comparison methodology, we
developed many iterations of the same WebRTC
application, each time employing a unique
JavaScript method for managing asynchronous
processes. Promises, Async/Await, and
Callbacks are all examples of these methods.
Key performance indicators were captured and
compared after testing each version on a 5G
network. Using this technique, we learned how
various JavaScript coding styles impact the
speed at which 5G-enabled WebRTC apps
function.

3.6. Data Analysis

The analysis of the data gathered from the
experiments, interviews, and comparisons of
codes constituted a significant aspect of the
study. Statistical and thematic analyses were
used to examine and interpret the data acquired.
Statisticians crunched the data from the
experiments. We reached hard conclusions on
the benefits of the 5G network by comparing the
performance indicators under 4G and 5G
settings.

The interviews were transcribed to conduct a
thematic analysis of the qualitative data
collected. This research aimed to identify key
issues with JavaScript, 5G, and WebRTC
integration as well as promising solutions and
approaches.

Finally, paired sample t-tests were used to
analyse the data from the code comparisons.
This analysis shed light on whether or not the
various JavaScript approaches affected
application performance on 5G networks.

We strived for thoroughness and depth of
investigation by using these various
methodological approaches. We gave useful
insights for Java script developers, network
engineers, and companies interested in
maximizing WebRTC's real-time
communication capabilities by capitalizing on
the advantages of 5G networks thanks to the
harmony between realistic tests and expert
opinions.

13

Ageel Mahmood Jawad/ Al-Rafidain Journal of Engineering Sciences Vol .1 Issue (1), 2023: 8-23

4. Technical Implementation and
Experimentation

In-depth knowledge of WebRTC, JavaScript,
and 5G technologies forms the backbone of our
investigation. Our method fully merges theory
and practice by combining fundamental
theoretical notions with rigorous hands-on
experimentation. Using tried-and-true
techniques and resources ensured that our
results would be reliable and applicable. Our
work is more credible because it uses a hybrid
approach that bridges the gap between
theoretical knowledge and practical application;
this gives readers confidence in the validity of
our findings and their capacity to be applied to
the rapidly changing field of real-time
communication technology.

4.1. WebRTC Deployment

The article’'s primary focus is implementing
WebRTC, a potentially revolutionary
technology that serves as the article's backbone.
We used the standard WebRTC APIs in the most
recent web browsers to create these real-time
communication tools. To provide a
decentralized, direct communication platform
for testing, we implemented RTCPeer
Connection, a core API for creating peer-to-peer
connections[24].

We also used the RTCData Channel API to
provide non-specific data transfer, guaranteeing
that apps are not limited to just sound and video
but may instead process any data. As a last
point, the get User Media API was fundamental
in acquiring access to media inputs from the
device, a fundamental component of any audio
and video conversation conducted in real-
time[10].

3. Results and discussion

Results using this research showed that 5G
networks can greatly improve real-time
communication when utilizing WebRTC apps
written in JavaScript. In this part, we go into the
findings from our experiments, interviews with
subject-matter experts, and analyses of similar
pieces of code.

4.2. JavaScript Proficiency

JavaScript's flexibility and real-time support
enabled WebRTC application development. To
evaluate application effects, we used
sophisticated JavaScript approaches with
different execution and performance. We
focused on asynchronous operation
management, a real-time application necessity
[27]. In 5G applications, we tested Callbacks,
Promises, and Async/Await for speed,
maintainability, and error handling. Any
JavaScript application needs strong error
handling, especially when transmitting real-time
data, when downtime may degrade the user
experience. Structured try-catch blocks and
promise rejection handlers enhanced application
robustness to unexpected faults and exceptions.

4.3. Network Simulation Proficiency

We used a network simulation tool to correctly
simulate real-world network settings to verify
article relevance and applicability [28]. This
essential part of the process enabled us to
simulate 4G and 5G network settings to
compare WebRTC application performance.
WebRTC application performance was
simulated wusing all relevant network
characteristics. Network speed, latency, packet
loss, and jitter were used to measure data
transmission rates, voice and video call quality,
and connection durability [29]. Technical
knowledge and execution enabled an in-depth
and practical examination of JavaScript's
potential to improve WebRTC apps'
performance on 5G networks. It shows a
dedication to theoretical understanding and
practical implementation.

4.4. Empirical Test Results

The results of the empirical testing showed that
5G networks significantly outperform 4G when
it comes to WebRTC applications.

We found, for instance, that using the 5G
network significantly reduced latency. The
average latency for the 4G-optimized app was
120ms, whereas it was just 20ms for the 5G-

14

Ageel Mahmood Jawad/ Al-Rafidain Journal of Engineering Sciences Vol .1 Issue (1), 2023: 8-23

optimized app. In real-time communication
applications, every millisecond matters,
reducing latency by six.

The data rate also improved considerably for the
5G-optimized application. The average data rate
for the 4G-optimized app was 30 Mbps, whereas
the average data rate for the 5G-optimized app
was an astonishing 300 Mbps. A tenfold
increase in data rate indicated that 5G networks
would be better equipped to handle data-
intensive real-time communication.

The 5G-optimized software also significantly
sped up the time required to establish a
connection. Compared to the 4G-optimized
software, the 5G-optimized app only needed
200ms on average to establish a connection.
This means people may begin conversing more
quickly, a boon to the apps' impressive real-time
capabilities.

The optimized 5G app improved media
transmission quality. This was especially
noticeable in video transmission, where the
superior visual quality attributable to 5G
networks' increased data velocity and reduced
latency was readily apparent.

Here is the grouped bar chart illustrating the
Empirical Test Results. It compares the
performance of a 4G-optimized app (in purple)
and a 5G-optimized app (in brown) across
various performance metrics such as latency,
data rate, and connection time (Fig. 1).

Empirical Test Results: 4G vs 5G Qptimized App
a0t 40G-optimized App
5G-oplimized App

3507

00}

2001

Performance

1501

1007

Latency (ms) Data Rate {Mbps}
Performance Metrics

Connection Time {ms)

Figure 1. Comparative Performance Analysis of 4G-
Optimized and 5G-Optimized Apps: Latency, Data
Rate, and Connection Time Comparison

4.5. Expert Interviews Results

The findings from our expert interviews show
that JavaScript may be used for WebRTC
applications over 5G networks but that several
obstacles must first be overcome.

The experts all agreed that JavaScript-based
real-time communication apps will benefit
greatly from 5G networks. They said
JavaScript's asynchronous nature and efficient
I/O processing make it a good fit for taking
advantage of 5G networks' speed and low
latency.

An expert has shared some code that may be
used by WebRTC apps operating on 5G
networks to process incoming data streams
better.

15

Ageel Mahmood Jawad/ Al-Rafidain Journal of Engineering Sciences Vol .1 Issue (1), 2023: 8-23

const handleDataChannel (event) => {
let incomingDataChannel = event.channel;

handleMessage;

incomingDataChannel .onmessage

}

const handleMessage (event) = {

let receivedMessage = event.data;

processMessage(receivedMessage);

}

Figure 2. JavaScript Code of Efficient Handling of
Incoming Data Streams

The experts also noted difficulties, such as
improving error handling and optimizing code
to prevent blocking activities, which might
nullify the advantages of 5G. A JavaScript
expert recommended utilizing try/catch in
conjunction with async/Await for error
handling.

const handleDataChannel (event) =) {
{
let incomingDataChannel = event.channel;

incomingDataChannel. onmessage handleMessage;

} (error) {

console.error("Error handling data channel: ", error);

}
}

Figure 3. JavaScript Code of Efficient Error
Handling with Try/Catch and Async/Await

For the Expert Interviews Results, since the data
IS qualitative, we can summarize the key
findings in a text format:

1. Experts agree that JavaScript is well-
suited for WebRTC applications over
5G networks due to its asynchronous
nature and efficient I/O processing.

2. Experts recommend using asynchronous
functions to process incoming data
streams effectively.

3. Some challenges must be overcome,
such as improving error handling and
optimizing code to prevent blocking
activities.

4.6. Comparative Code Analysis Results

Results from a code comparison show that
various JavaScript approaches have distinct
effects on the performance of WebRTC apps
while using a 5G network.

The program performed better in the Promise-
based version than in the Callback-based
version. However, the Async/Await variant
fared better than the others.

Async/Await, a more recent JavaScript method,
is useful for managing asynchronous tasks in
WebRTC applications, especially in a 5G
setting, as shown by these results. Async/Await
makes code more readable and simpler to fix
bugs, which is crucial for complicated real-time
communication systems.

The results are shown in the bar chart below the
Comparative Code Analysis. Each bar
represents a separate JavaScript technique
(Callbacks, Promises, Async/Await), and its
height reflects its relative speed according to the
data presented.

This information is qualitative and may be best
conveyed using summary points for the
Implications and Insights from the Data
Analysis:

1. The switch from 4G to 5G networks
substantially influences WebRTC
applications.

2. The asynchronous nature of JavaScript
allows it to successfully manage many
real-time data streams in a 5G scenario.

3. Several issues may restrict the benefits
of 5G networks, such as the requirement
for better error handling and techniques
to avoid blocking operations.

16

Ageel Mahmood Jawad/ Al-Rafidain Journal of Engineering Sciences Vol .1 Issue (1), 2023: 8-23

Comparative Code Analysis Results

80

60

Perfornmance

20

Callbacks Promises Async/Awalt
JavaScript Methods

Figure 4. A Comparative Code Analysis of
Callbacks, Promises, and Async/Await in WebRTC

Apps

The findings suggest that WebRTC apps may
deliver improved real-time communication by
optimizing JavaScript code and using the
superior capabilities of 5G networks.
Significant gains in latency, data throughput,
and connection initiation time are just a few of
5G's benefits. Interviews with subject matter
experts give weight to these conclusions and
light on the difficulties and successful
approaches to coding. Comparing the code to
reaffirm JavaScript's potential for constructing
WebRTC apps in a 5G context demonstrates its
usefulness in performing asynchronous tasks.

4.7. Implications and Insights from the Data
Analysis

After carefully examining the data, numerous
important conclusions and insights were clear.
The upgrade from 4G to 5G networks might
dramatically affect WebRTC software. Key
performance indicators show that WebRTC
apps' capacity for real-time communication is
much improved in the high-speed, low-latency
environment of 5G networks.

The transcribed interviews provided further
information. High-performance WebRTC app
development using JavaScript on 5G was a
common topic of these conversations.
JavaScript's asynchronous nature and the speed
of 5G networks may be used to process several
data streams in real-time without slowing down
the user experience.

Using asynchronous functions in JavaScript to
effectively process incoming data streams was
brought up as a beneficial coding technique
during these conversations.

const processIncomingData
(let data

(dataChannel) => {
dataChannel) {

processData(data);

}
}

Figure 5. JavaScript Code of Asynchronously
Processing Incoming Data Streams

These results will be crucial for developers and
businesses who want to optimize their real-time
communication apps for the widespread rollout
of 5G.

However, it is crucial to recognize the
difficulties during the expert interviews, such as
the need for more effective error-handling
systems and tactics to avoid blocking processes
that may restrict the benefits of 5G. These
factors are essential for realizing the full
potential of 5G networks.

4.8. Results from the Comparative Approach

By comparing results from both sets of tests, we
gained insight into how certain JavaScript
methods affect WebRTC apps' throughput on
5G networks.

After extensive testing, we determined that the
Async/Await variant outperformed both the
Promise and Callback variants. The improved
code execution and greater use of 5G's
capabilities result from Async/A wait’s
simplified handling of asynchronous tasks.

One important takeaway from this analysis is
the recognition that various JavaScript

17

Ageel Mahmood Jawad/ Al-Rafidain Journal of Engineering Sciences Vol .1 Issue (1), 2023: 8-23

approaches may influence WebRTC application
performance on 5G networks:

dataChannel.onmessage - function (event) {
processData(event.data, function (error, result) {
if (error) console.error("Error: ", error);

else console.log("Data processed: ", result);

dataChannel.onmessage = function (event) {
processData(event . data)
.then(result => console.log("Data processed: ", result))

.catch(error => console.error("Error: ", error));

§ - dataChannel.onmessage - async function (event) {

try {

let result = await processData(event.data);

console.log("Data processed: ", result);

} catch (error) {

console.error("Error: ", error);

Figure 6. JavaScript Code of Comparing Callbacks,
Promises and Async/Await for Data Processing

These code snippets show how the three
methods vary from one another. While
Callbacks and Promises can handle
asynchronous actions, they may result in more
complicated and less readable code if numerous
asynchronous operations are handled.
Async/Await makes the code more legible and
understandable, ~ which may improve
performance and reduce coding mistakes.

The systematic study methodology yielded
conclusive evidence that JavaScript-based
WebRTC apps may greatly benefit from the
superior capabilities of 5G networks. Real-time
communication has come a long way thanks to
improvements like lower latency, higher data
rates, quicker connection times, and higher
quality material.

Meanwhile, the findings stress the need to
employ cutting-edge JavaScript methods like

Async/Await to manage asynchronous tasks in a
5G setting. Developers may benefit from these
methods by producing more efficient and easier-
to-maintain code. These findings will aid
software engineers and company owners in
making better judgments as they create and fine-
tune 5G real-time communication apps.

2 const WebSocket - require(’ws’);

5 const wss = new WebSocket.Server({ port:
onst clients - new Map();
s5.0n(" connection®, (ws) => {

clients.set(ws, { offer: » answer: , candidate: n:

if (msg.offer) clients.get(ws).offer = msg.offer;

.answer) clients.get(ws).answer - msg.answer;

if (msg.candidate) clients.get(ws).candidate - msg.candidate;

for (let client of clients.keys()) {

i (client

Figure 7. JavaScript Code of Creating a Basic
WebSocket Server with Node.js for Real-Time
Communication

This area of code is largely responsible for setting up the
required variables for the WebRTC connection, retrieving
the local media stream (video and audio), and starting the
WebRTC connection when the 'Start' button is clicked.

18

Ageel Mahmood Jawad/ Al-Rafidain Journal of Engineering Sciences Vol .1 Issue (1), 2023: 8-23

let localStream;
2 let remoteStream;
3 let peerConnection;

peerConnectionConfig = {

const localVideo = document.getEleme

2 const remoteVideo = docum

unction start() {
navigator.mediaDevices.getUserMedia({ video:
.then(stream => {
localStream - s
localVideo.srcObject =
startConnection();
N

-catch(error => console.error(error));

Figure 8. JavaScript Code of Establishing WebRTC
Connection and Streaming Local Video

This method handles the fundamentals of
establishing a peer-to-peer WebRTC connection
(Fig.9):

1. The specified configuration, which may
contain information about ICE
(Interactive Connectivity
Establishment) servers, is used to initiate
the peer connection.

2. After that, it links up the local video and
audio.

3. Incoming tracks from the remote peer
and ICE candidates are processed by
event listeners.

4. By way of the WebSocket server, an
SDP (Session Description Protocol)
offer is then crafted and sent to the
distant peer. Information about the
media and the connection settings is
provided in the offer.

function startConnection() {

peerConnection = new RTCPeerConnection(peerConnectionConfig);

acks (). forEach(track => {

ck(track, localstream);

s oBow
L -}

te': iceEvent.candidate }));

-

a5
a6
a7
48
439
56

peerConnection.setlocalDescription(offer);
then(() => {

ws. send(JSON.stringify({ 'offer’: peerConnection.localDescription }));
b
.catch(error => console.error(error));

}

Figure 9. JavaScript Code of Establishing a
WebRTC Peer Connection

This section of code (Fig.10) shows the WebRTC
procedure that processes signalling data from a
WebSocket server. An offer, a response, or an ICE
candidate are all examples of signalling information
necessary to create a WebRTC connection.

The ‘handle Offer’ using when an offer is received
signalling that another client wishes to create a peer-to-
peer connection, this function is called. This procedure
changes an external definition and generates a response,
which is subsequently returned. After an offer has been
delivered, if a response is received, the ‘handle Answer"
function will be invoked. The response is used to update
the remote description in this function.

The ‘handle Candidate’ function is called when an ICE
candidate is received. This function adds the candidate to
the peer connection to help in finding the best path
between peers for the communication.

19

Ageel Mahmood Jawad/ Al-Rafidain Journal of Engineering Sciences Vol .1 Issue (1), 2023: 8-23

function(event) {

'+ event.data);

let msg = JSON.parse(event.data);

(msg.offer) {
handle0ffer (msg.offer);

se if (msg.answer) {

handleAnswer (msg.ansuer) ;

se if (msg.candidate) {

handleCandidate (msg. candidate);

Figure 10. JavaScript Code of Handling WebSocket
Server Messages and WebRTC Signaling

function handleOffer(offer) {
peerConnection. setRemoteDescription(nen RTCSessionDescription(offer))
.th {
return peerConnection.createAnswer();
h
-then(answer =» {
return peerConnection.setlocalDescription(answer);
h

then(() = {

ws.send(JSON. stringify({ ‘answer': peerConnection.localDescription }));
h
.catch(error =5 console.error(error));

9%}

@1~ function handleAnswer(answer) {
peerConne: tRemoteDescription(new RTCSessionDescription(answer))

.catch(error => console.error(error));

function handleCandidate(candidate) {

peerConnection. addIceCandidate(nen RTCIceCandidate(candidate))

109 .catch(error =» console.error(error));
10 }

Figure 11. JavaScript Code of Handling Incoming
WebRTC Signals

These functions shown on Fig. 11, are designed
to handle the incoming signals from the
signalling server, which include offers, answers,
and ICE candidates. Here's a brief explanation
of each:

1. ‘Handle Offer ()’: When a remote peer
makes an offer, represented by a session
description, this method is called. The
offer contains information about the
media capabilities of the peer and its
network information. After setting this

remote description, the function
generates an answer and sends it back to
the remote peer.

2. ‘handle Answer()’: This function is
invoked when an answer (also a session
description) is received from the remote
peer in response to our offer. The
function simply sets this answer as the
remote description of the
‘RTCPeerConnection’.

3. ‘Handle Candidate ()’: This function is
invoked when an ICE candidate is
received from the remote peer. ICE
candidates contain network information
about how to connect to the peer. The
function adds this candidate to the
‘RTCPeerConnection’, which allows it
to establish the connection to the peer.

Each of these functions is crucial for the
WebRTC handshake and establishing the peer-
to-peer connection.

Change the 'turn: numb.viagenie.ca' to your
TURN server's address, username, and
password. Some companies provide these if
you still need one, or you may create your own.
Remember that this is only a simplified example
of implementing a WebRTC application.
Numerous special circumstances and error
handling have been left out of this
implementation. An application meant for
widespread use would have to think about such
details.

As previously said, 5G will not affect your app's
use of WebRTC. The connection's performance
and dependability are improved because of the
increased bandwidth and decreased latency.

5. Discussion

The article sought to determine whether and
how WebRTC apps written in JavaScript benefit
from being run on faster 5G networks. Several
experiments, lines of inquiry, and comparative
studies were conducted to learn more about this
phenomenon. The findings corroborated the
expectations for performance improvements
that 5G technology holds.

Key performance indicators increased
significantly when discussing the possibilities of
5G networks for WebRTC applications. The

20

Ageel Mahmood Jawad/ Al-Rafidain Journal of Engineering Sciences Vol .1 Issue (1), 2023: 8-23

enhanced efficiency and quicker reaction times
of real-time communication are made possible
by 5G networks' faster speeds and lower
latency. These results are consistent with those
of Al-Sa'di et al. (2020), who discovered that the
higher performance characteristics of 5G
networks may improve real-time
communication applications.

The article, however, provides a fresh angle on
this discussion. We investigated a particular
technological implementation of WebRTC, the
use of JavaScript as the language for creating
apps, that has yet to be covered extensively in
earlier studies. JavaScript's asynchronous
nature, especially with the Async/Await syntax,
fits well with the features of 5G networks,
allowing for the effective management of many
concurrent data streams. This is a crucial
discovery that may direct future
recommendations for creating WebRTC apps
for 5G networks.

This study's results are consistent with those of
Schuster et al. (2019), who contend that
asynchronous programming paradigms like
JavaScript's Promises and Async/Await provide
superior support for concurrent operations than
more conventional Callback-based patterns. In
the context of WebRTC applications over 5G
networks, the Async/Await method was shown
to be superior to both Promises and Callbacks.
This finding substantiates the need for cutting-
edge JavaScript methods for improving 5G real-
time communication.

Despite these encouraging results, it is crucial to
recognize the obstacles mentioned in the article.
Some experts consulted for this preliminary
study expressed concern that JavaScript's error
handling and the possibility of blocking
activities will mitigate some of the advantages
of 5G. Guo et al. (2021) pointed out similar
difficulties, highlighting the need for efficient
asynchronous operations and strong error-
handling methods to develop real-time
communication applications for 5G networks.
This article adds to the growing conversation on
how 5G, WebRTC, and JavaScript fit together.
Our study offers practical guidance to
companies and developers interested in using
5G's potential for real-time communication
services. However, the results stress the need for

more study into this field, particularly in light of
the fast development of network technologies
and programming paradigms.

This study might further analyse the efficiency
of JavaScript-based WebRTC apps in
standalone (SA) and non-standalone (NSA) 5G
deployment situations. Real-time
communication application optimization for 5G
networks may also be aided by investigating
new JavaScript capabilities like top-level await

6. Conclusions

The article offers valuable insights into using
JavaScript to develop WebRTC applications on
5G networks. The potential of 5G to enhance
real-time communication has been evident, but
our research adds a new perspective by focusing
on the synergy between JavaScript, WebRTC,
and 5G technologies.

Through a comprehensive methodology
involving empirical testing, expert interviews,
and comparative studies, our results
unequivocally point toward the significant
improvements 5G brings to WebRTC
applications. These enhancements include lower
latency, higher data rates, faster connection
times, and improved media quality, all of which
contribute to an improved user experience and
enhanced real-time communication capabilities.
These findings contribute to the growing body
of research advocating for the potential of 5G
networks in transforming real-time
communication applications.

Our study also contributes a nuanced
understanding of the role of JavaScript in this
process. The asynchronous nature of JavaScript,
particularly when using modern techniques such
as Async/Await, aligns well with the
capabilities of 5G networks. By efficiently
handling multiple simultaneous data streams,
these applications can harness the full potential
of 5G's high-speed, low-latency environment, a
finding of considerable importance for
developers and businesses.

However, our research also underscores the
challenges that need to be addressed to harness
the benefits of 5G networks fully. These include

21

Ageel Mahmood Jawad/ Al-Rafidain Journal of Engineering Sciences Vol .1 Issue (1), 2023: 8-23

the need for efficient error-handling
mechanisms and strategies to prevent blocking
operations in JavaScript. Developers must
consider these factors when designing and
optimizing their applications for 5G networks.

Moreover, the comparative approach of our
study revealed the impact of different JavaScript
techniques on the performance of WebRTC
applications. Notably, the Async/Await
approach consistently outperformed both
Promises and Callbacks, suggesting that modern
JavaScript techniques are crucial to harnessing
the full potential of 5G for real-time
communication.

In terms of practical implications, our research
provides actionable insights for JavaScript
developers, network engineers, and businesses
looking to leverage the advanced capabilities of
5G networks for their real-time communication
applications. The importance of using modern
JavaScript techniques and the potential of 5G
networks are key takeaways from our study that
can guide development practices and strategic
decisions in the field

References

[1] Berg DVD, Glans R, Koning DD, Kuipers FA,
Lugtenburg J, Polachan K, Venkata PT, Singh C,
Turkovic B, Wijk BV: Challenges in Haptic
Communications Over the Tactile Internet. IEEE
Access 2017, 5:23502-23518.

[2] Rinaldi C, Franchi F, Marotta A, Graziosi F,
Centofanti C: On the Exploitation of 5G Multi-
Access Edge Computing for Spatial Audio in
Cultural Heritage Applications. IEEE Access 2021,
9:155197-155206.

[3] Loghin D, Cai S, Chen G, Dinh TTA, Fan F, Lin Q,
Ng J, Ooi BC, Sun X, Ta QT et al: The Disruptions
of 5G on Data-Driven Technologies and
Applications. IEEE Transactions on Knowledge and
Data Engineering 2020, 32(6):1179-1198.

[4] Niknam T, Azizipanah-Abarghooee R, Roosta A:
Reserve Constrained Dynamic Economic Dispatch:
A New Fast Self-Adaptive Modified Firefly
Algorithm. IEEE Systems Journal 2012, 6(4):635-
646.

[5] Mohata R, Goel, A., Bahl, V., & Sengar, N.: Peer To
Peer Real-Time Communication Using WebRTC.
International Journal of Scientific Research in
Computer Science, Engineering and Information
Technology 2021.

[6] Jesup R, & Sarker, Z.: Congestion Control
Requirements for Interactive Real-Time Media.
RFC 2021, 8836:1-10.

[7] Nakimuli W, Garcia-Reinoso J, Sierra-Garcia JE,
Serrano P, Fernandez 1Q: Deployment and
Evaluation of an Industry 4.0 Use Case over 5G.
IEEE Communications Magazine 2021, 59(7):14-
20.

[8] Kirmizioglu RA, Tekalp AM: Multi-Party WebRTC
Services Using Delay and Bandwidth Aware SDN-
Assisted IP Multicasting of Scalable Video Over 5G
Networks. IEEE Transactions on Multimedia 2020,
22(4):1005-1015.

[9] Blum N, Lachapelle S, Alvestrand H: WebRTC -
Realtime Communication for the Open Web
Platform: What was once a way to bring audio and
video to the web has expanded into more use cases
we could ever imagine. Queue 2021, 19(1): Pages
30.

[10]Suciu G, Stefanescu S, Beceanu C, Ceaparu M:
WebRTC role in real-time communication and video
conferencing. In: 2020 Global Internet of Things
Summit (GloTS): 3-3 June 2020 2020. 1-6.

[11]Liu G, & Jiang, D.: 5G: Vision and Requirements
for Mobile Communication System towards Year
2020. Chinese journal of engineering 2016:1-8.

[12]Hu L, Miao Y, Yang J, Ghoneim A, Hossain MS,
Alrashoud M: IF-RANs: Intelligent Traffic
Prediction and Cognitive Caching toward Fog-
Computing-Based Radio Access Networks. IEEE
Wireless Communications 2020, 27(2):29-35.

[13] Zaidi S, Smida OB, Affes S, Vilaipornsawai U,
Zhang L, Zhu P: User-Centric Base-Station Wireless
Access Virtualization for Future 5G Networks. IEEE
Transactions on Communications 2019, 67(7):5190-
5202.

[14]Mendes LL, Moreno CS, Marquezini MV,
Cavalcante AM, Neuhaus P, Seki J, Aniceto NFT,
Karvonen H, Vidal I, Valera F et al: Enhanced
Remote Areas Communications: The Missing
Scenario for 5G and Beyond 5G Networks. IEEE
Access 2020, 8:219859-219880.

[15]Hussain ASP: A Framework for Real Time
Communication on Web using with WebRTC.
International Journal for Research in Applied
Science and Engineering Technology 2019, 7(5).

[16]Kilinc C, & Andersson, K.: A Congestion
Avoidance Mechanism for WebRTC Interactive
Video Sessions in LTE Networks. Wireless Personal
Communications 2014, 77:2417-2443.

[17]Jell A, Vogel, T., Ostler, D., Marahrens, N.,
Wilhelm, D., Samm, N., Eichinger, J., Weigel, W.,
FeuBner, H., Friess, H., & Kranzfelder, M.: 5th-
Generation Mobile Communication: Data Highway
for Surgery 4.0. Surgical technology international
2019, 35:36-42

[18] Khorov E, Krasilov, A., Selnitskiy, 1., & Akyildiz, I.
. A Framework to Maximize the Capacity of 5G
Systems for Ultra-Reliable =~ Low-Latency

22

Ageel Mahmood Jawad/ Al-Rafidain Journal of Engineering Sciences Vol .1 Issue (1), 2023: 8-23

Communications. IEEE Transactions on Mobile
Computing 2020, 20:2111-2123.

[19] Panwar N, Sharma, S., & Singh, A.: A survey on 5G:
The next generation of mobile communication.
Physical Communication 2015, 18:64-84.

[20]Hanson R, Prilusky, J., Renjian, Z., Nakane, T., &
Sussman, J.: JSmol and the Next-Generation Web-
Based Representation of 3D Molecular Structure as
Applied to Proteopedia. Israel Journal of Chemistry
2013, 53:207-216.

[21] Loreto S, et al.: Enhancing Real-Time Capabilities
in Online Applications with JavaScript and
WebRTC APIs. Proceedings of the International
Conference on WebRTC (ICW) 2017.

[22] Gupta R, & Patel, N.: Leveraging 5G Infrastructure:
Asynchronous Procedures, Error Handling, and
Adaptive Streaming with JavaScript. Proceedings of
the International Conference on Internet of Things
and Web Services (I0TWS) 2020.

[23]Wang L, et al.: ower Consumption and Device
Compatibility Challenges in 5G Integration. Journal
of Mobile Computing and Communications Review
2020, 24(4):56-65.

[24] Mohata R, Goel, A., Bahl, V., & Sengar, N.: Peer To
Peer Real-Time Communication Using WebRTC.
International Journal of Scientific Research in
Computer Science, Engineering and Information
Technology 2021.

[25] Yan G: Simulation analysis of key technology
optimization of 5G mobile communication network
based on Internet of Things technology.
International Journal of Distributed Sensor
Networks 2019, 15.

[26] Lei K, Zhong, S., Zhu, F., Xu, K., & Zhang, H.: An
NDN loT Content Distribution Model With
Network Coding Enhanced Forwarding Strategy for
5G. IEEE Transactions on Industrial Informatics
2018, 14:2725-2735.

[27]Szalay Z: Next Generation X-in-the-Loop
Validation Methodology for Automated Vehicle
Systems. IEEE Access 2021, 9:35616-35632.

[28] Furgan M, Zhang, C., Yan, W., Shahid, A., Wasim,
M., & Huang, Y.: A Collaborative Hotspot Caching
Design for 5G Cellular Network. IEEE Access 2018,
6:38161-38170.

[29] Hamamreh J, Ankarali, Z., & Arslan, H.: CP-Less
OFDM With Alignment Signals for Enhancing
Spectral Efficiency, Reducing Latency, and
Improving PHY Security of 5G Services. IEEE
Access 2018, 6:63649-63663.

[30]J. O. Williams, “Narrow-band analyzer,” Ph.D.
dissertation, Dept. Elect. Eng., Harvard Univ.,
Cambridge, MA, 1993.

[31]B. Klaus and P. Horn, Robot Vision. Cambridge,
MA: MIT Press, 1986.

23

