Zeolite Mineral Importance for Soil and Agricultural engineering – A Review

Main Article Content

Mohammed Salim Jumaah
Lekaa Esmaeel Mahdi
Maysam Abeaalsalam Rasheed

Abstract

Zeolite is a stone that was discovered in 1756 by Baron Axel Frederick Cronstedt- Swedish scientist. He identified the existence of natural Zeolite in samples of copper mines in Sabavari, Lampmarke County, Sweden. Baron Axel called this stone "boil" (zen) and "stone" (lithos), (Greek name) i.e. boiling metal because when the metal is heated, water comes out of it and it appears as if it is boiling. It is a type of sedimentary, volcanic mineral rock, it is considered a crystalline aluminosilicate in the form of a three-dimensional network, and spread especially common in tuffaceous rocks. Our objective is to establish the significance of zeolites and elucidate their role in
agricultural engineering, particularly in fostering sustainability, through an examination of key attributes of this mineral. To begin, we introduce the mineral zeolite, providing insights into its inherent nature. We investigate into its classification, physical and chemical characteristics, subsequently exploring transformations that the zeolite mineral undergoes. Further, we cast a spotlight on diverse agricultural applications of zeolites, including their utilization as fertilizers or soil enhancers, outlining their contributions to agricultural productivity. The paramount features of zeolites are closely tied to their primary applications across a range of fields, prominently within the agricultural domain.

Article Details

How to Cite
[1]
M. S. Jumaah, L. . Mahdi, and M. . Rasheed, “Zeolite Mineral Importance for Soil and Agricultural engineering – A Review”, Rafidain J. Eng. Sci., vol. 2, no. 1, pp. 177–184, Jan. 2024, doi: 10.61268/nga8ry84.
Section
Review Articles

How to Cite

[1]
M. S. Jumaah, L. . Mahdi, and M. . Rasheed, “Zeolite Mineral Importance for Soil and Agricultural engineering – A Review”, Rafidain J. Eng. Sci., vol. 2, no. 1, pp. 177–184, Jan. 2024, doi: 10.61268/nga8ry84.

References

Ramesh, K. & Reddy D.D. (2011). Zeolites and Their Potential Uses in Agriculture. Advances in Agronomy, Volume 113, Pages 219-241. https://doi.org/10.1016/B978-0-12-386473-4.00004-X

Dussan, A., Jorge A.C. & Heiddy P.Q. (2020). Zeolites derived from natural minerals: Solid rock and volcanic ash. Materialstoday, Volume 34, Pages 148-149. https://doi.org/10.1016/j.mattod.2020.03.006.

Isaque, C.R., Ana M.P.M., Glausia N.Q., Cassiana R.L.M. & Fernando R.R. (2023). Zeolite associated with silici-fication in a volcano-sedimentary context, southern Brazil. Journal of South American Earth Sciences, Volume 128, 104473. https://doi.org/10.1016/j.jsames.2023.104473

Lamberov, A.A., Romanova R.G., Egorova S.R. & Gibadllin I.K. (2000). Investigation of the surface properties of ZSM zeolite decationized in the electrolyzer chamber by physical and chemical methods. Journal of Molecular Catalysis A: Chemical, 158(1): 471-474. https://doi.org/10.1016/S1381-1169(00)00127-8

Grigoryan, F., Hambartsumyan A., Haroyan H. & Karapetyan A. (2001). 01-P-16 - Physical-chemical and adsorptive properties of Armenia natural zeolites. Studies in Surface Science and Catalysis, Volume 135, Page 243. https://doi.org/10.1016/S0167-2991(01)81509-3

Luis, F.I. (2014). Study of the influence of physical–chemical properties of steamed H-MOR zeolites in the mechanism of adsorption of fatty acids and their esterification. Microporous and Mesoporous Materials, Volume 200, Pages 19-26. https://doi.org/10.1016/j.micromeso.2014.08.028

Erdogmus, E., Sutcu M., Hossain S., Bayram M., Sari A., Gencel O. & Togay O. (2023). Effect of molding pressure and firing temperature on the properties of ceramics from natural zeolite. Construction and Building Materials, Volume 402, 132960. https://doi.org/10.1016/j.conbuildmat.2023.132960.

Andrew Carr, D., Mohammed L., Yang S., Vaisman I. & Estela B. (2009). Machine learning approach for structure-based zeolite classification.

Microporous and Mesoporous Materials, 117(1–2): 339-349. https://doi.org/10.1016/j.micromeso.2008.07.027

Sadrara, M., Mohammedreza K.K., Darian J.Y. & Amir B.G. (2022). Rapid determination and classification of zeolites based on Si/Al ratio using FTIR spectroscopy and chemometrics. Infrared Physics & Technology, Volume 116, 103797. https://doi.org/10.1016/j.infrared.2021.103797

Loiola, A.R., Bessa R.A., Oliveira C.P., Freitas A.D., Soares S.A. & Bohn F. (2022). Magnetic zeolite composites: Classification, synthesis routes, and technological applications. Journal of Magnetism and Magnetic Materials, Volume 560, 169651. https://doi.org/10.1016/j.jmmm.2022.169651

Panagiotis, M. (2011). Application of natural zeolites in environmental remediation: A short review. Microporous and Mesoporous Materials, 144(1–3): 15-18. https://doi.org/10.1016/j.micromeso.2011.03.024

Justyna, S.; Alicja S.; Renata J.; Tomasz B. & Monika M. (2021). Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection. Journal of Cleaner Production, Volume 311, 127461. https://doi.org/10.1016/j.jclepro.2021.127461

Adam, M.R.; Othman M.H.D.; Hubadillah S.K.; Aziz M.H.A. and Jamalludin M.R. (2023). Application of natural zeolite clinoptilolite for the removal of ammonia in wastewater. Materialtoday Proceeding, In Prees, Available online. https://doi.org/10.1016/j.matpr.2022.12.207.

Alessandro, C.; Claudio B.; Anna R.R.; Antonio C. & Stella L. (2023). Analysis of critical water flow and solute transport parameters in different

soils mixed with a synthetic zeolite. CATENA, Volume 228. https://doi.org/10.1016/j.catena.2023.107150.

Cataldo, E., Salvi L., Paoli F., Fucile M., Masciandaro G., Manzi D., & Mattii G.B. (2021). Application of zeolites in agriculture and other potential uses: A review. Agronomy, 11(8):15-47. https://doi.org/10.3390/agronomy11081547.

Sangeetha, C. & Baskar P. (2016). Zeolite and its potential uses in agriculture: A critical review. Agricultural Reviews, 37(2), 101-108. https://doi.org/10.18805/ar.v0iof.9627.

Tsintskaladze, G.; Eprikashvili L.; Mumladze N.; Gabunia V. & Shatakishvili T. (2017). Nitrogenous zeolite nanomaterial and the possibility of its application in agriculture. Annals of Agrarian Science, 15(3): 365-369. https://doi.org/10.1016/j.aasci.2017.07.006.

Flores, C.G.; Helena S.; Nilson R.M.; Lizete F. & Oliveira J.C.P. (2017). Potassic zeolites from Brazilian coal ash for use as a fertilizer

in agriculture. Waste Management, Volume 70, Pages 263-271. https://doi.org/10.1016/j.wasman.2017.08.039.

Manjaiahet, K.M.; Raj M.; Ranjan P.; Samar C.D. & Binoy S. (2019). Modified Clay and Zeolite Nanocomposite Materials: Clay minerals and zeolites for environmentally sustainable agriculture. Environmental and

Pharmaceutical Applications Micro and Nano Technologies, Pages 309-329. https://doi.org/10.1016/B978-0-12-814617-0.00008-6

Renata, J., Justyna S., Krzysztof G. & Monika M.H. (2022). The use of zeolites as an addition to fertilisers – A review. CATENA, Volume 213, 106125. https://doi.org/10.1016/j.catena.2022.106125.

Galamini, G.; Ferretti G.; Rosinger C.; Huber S.; Faccini B. & Keiblinger K.M. (2023). Recycling nitrogen from liquid digestate via novel reactive struvite and zeolite minerals to mitigate agricultural pollution. Chemosphere, Volume 317, 137881. https://doi.org/10.1016/j.chemosphere.2023.137881

Cho B.; Lee K. Y.; Mun S. B.; Lim C. R.; Yun Y. S. & Cho C. W. (2023). Adsorptive removal of micropollutants by natural and faujasite zeolites: Structural effect of micropollutants on adsorption. Ecotoxicology and Environmental Safety, 22 (270), 115869. https://doi: 10.1016/j.ecoenv.2023.115869.

Litaor, M. I., Katz, L., & Shenker, M. (2017). The influence of compost and zeolite co-addition on the nutrients status and plant growth in

intensively cultivated Mediterranean soils. Soil Use and Management, 33(1), 72-80. https://doi.org/10.1111/sum.12324

Mondal, M., Biswas, B., Garai, S., Sarkar, S., Banerjee, H., Brahmachari, K. & Hossain, A. (2021). Zeolites enhance soil health, crop

productivity and environmental safety. Agronomy, 11(3), 448. https://doi.org/10.3390/agronomy11030448

Mostafa, M., Hadi M., Sayyad G. & Mohammadreza K. (2014). Transport of nitrate and ammonium ions in a sandy loam soil treated with potassium zeolite – Evaluating equilibrium and non-equilibrium equations. Acta Ecologica Sinica, 34(6): 342-350. https://doi.org/10.1016/j.chnaes.2014.09.002

Hajar, T.S.; Hossein K., Vasillis J.I. & Antonis A.Z. (2019). Application of zeolites in organic waste composting: A review. Biocatalysis and Agricultural Biotechnology, Volume 22, 101396. https://doi.org/10.1016/j.bcab.2019.101396

Tomo, M. & Nebojsa M. (2020). Fruit Crops, Diagnosis and Management of Nutrient Constraints: Soil fertility: Chapter 41- Plant nutrition vis-à-vis fruit yield and quality of stone fruits. Pages 583-606. https://doi.org/10.1016/B978-0-12-818732-6.00041-1

Ortega, R., Domene M.A., Soriano M., Asencio C. & Miralles I. (2020). Improving the fertility of degraded soils from a limestone quarry with organic and inorganic amendments to support vegetation restoration with semiarid Mediterranean plants. Soil and Tillage Research, Volume 204, 104718. https://doi.org/10.1016/j.still.2020.104718

Xu, P., Shu L., Li Y., Zhou S., Zhang G., Wu Y. & Yang Z. (2023). Pretreatment and composting technology of agricultural organic waste for sustainable agricultural development. Heliyon, 9 (5): e16311. https://doi.org/10.1016/j.heliyon.2023.e16311

Liu, D., Huang Z., Liu D., Yang Y., Ding Y., Xia Z. & Xu W. (2023). Synergistic effect of zeolite and biochar on geotechnical and fertility properties of vegetation concrete prepared by sandy soil. Construction and Building Materials, Volume 392, 132029. https://doi.org/10.1016/j.conbuildmat.2023.132029

Oste, L. A., Lexmond, T. M., & Van Riemsdijk, W. H. (2002). Metal immobilization in soils using synthetic zeolites. Journal of Environmental Quality, 31(3), 813-821. https://doi.org/10.2134/jeq2002.8130

Gondek, K.; Mierzwa-Hersztek M. & Jarosz R. (2023). Effect of willow biochar and fly ash-derived zeolite in immobilizing heavy metals and promoting enzymatic activity in a contaminated sandy soil. CATENA, Volume 232, 107429. https://doi.org/10.1016/j.catena.2023.107429.

Sharma, V.; Javed, B.; Byrne, H.; Curtin, J. & Tian, F. (2022). Zeolites as Carriers of Nano-Fertilizers: From Structures and Principles to Prospects and Challenges. Applied Nano. 3. P. 163-186. https://doi: 10.3390/applnano3030013.

De Carvalho Izidoro, J., Fungaro, D. A., & Cataldo, E. (2023). Zeolites synthesized from agro-industrial residues applied in agriculture: A review and future prospects. Soil Use and Management, 00, 1–13. https://doi.org/10.1111/sum.13003.

Bingre, R., Louis, B., & Nguyen, P. (2018). An overview on zeolite shaping technology and solutions to overcome diffusion limitations. Catalysts, 8(4), 163. https://doi.org/10.3390/catal8040163