The Impact of Shear Connector Numbers on the Flexural Performance of Composite Geopolymer Reinforced Concrete Beams with Big Transverse Web Openings.

Main Article Content

Kafi Matloob kafi
Ali Sabah Al Amli

Abstract

Geopolymer concrete is a sustainable alternative to conventional Portland cement-based concrete, utilizes industrial by-products like fly ash and slag. Renowned for its reduced carbon footprint and exceptional durability, geopolymer concrete is gaining global recognition in eco-friendly construction practices. Steel composite reinforced geopolymer concrete beams combine the strength of steel with the sustainability of geopolymer concrete, offering a sturdy structural solution. This collaborative approach results in a composite material with excellent crack resistance and durability, harnessing the advantageous properties of both steel and geopolymer concrete. These beams present a promising option in construction by striking a balance between structural performance and environmental considerations through the incorporation of geopolymer technology.


The focus of the current study is to investigate the impact of steel connectors on the flexural behavior of composite reinforced geopolymer concrete beams that have big transverse web opening through experimental methods. The experimental program involves casting four geopolymer beams, with one being a traditional geopolymer-reinforced concrete beam (Control). The remaining three specimens are composite reinforced geopolymer concrete beams, each featuring a bottom 3 mm steel plate with six, twelve, and eighteen connectors near each support. The beams share common dimensions, with a total length of 1600mm, a height of 250mm, and a width of 180mm. The results showed that increasing the number of connectors near supports increased the resulted flexural behavior of beams. Such connectors decreased the first crack load from 15.56% to 6.67% while the service load decreased from 26.16% to 15.35%. the load-carrying capacity was also decreased from 28% to 16%. Finally, the mode of failure was moved from traditional tension failure to concrete crushing.

Article Details

How to Cite
[1]
K. Matloob and A. . Amli, “The Impact of Shear Connector Numbers on the Flexural Performance of Composite Geopolymer Reinforced Concrete Beams with Big Transverse Web Openings”., Rafidain J. Eng. Sci., vol. 2, no. 1, pp. 225–238, Apr. 2024, doi: 10.61268/r2510217.
Section
Civil Engineering

How to Cite

[1]
K. Matloob and A. . Amli, “The Impact of Shear Connector Numbers on the Flexural Performance of Composite Geopolymer Reinforced Concrete Beams with Big Transverse Web Openings”., Rafidain J. Eng. Sci., vol. 2, no. 1, pp. 225–238, Apr. 2024, doi: 10.61268/r2510217.

References

Al-Deen, S., Ranzi, G., & Vrcelj, Z. “Long-Term Experiments of Composite Steel-Concrete Beams”. Procedia Engineering, 14, 2807–2814. 2011.

https://doi.org/10.1016/j.proeng.2011.07.353

Wright, H. “Composite Beams”. Composite Construction. 2003.

https://doi.org/10.4324/9780203451663.ch2.

Giussani, F.. “The effects of temperature variations on the long-term behaviour of composite steel–concrete beams”. Engineering Structures, 31(10), 2392–2406. 2009.

https://doi.org/10.1016/j.engstruct.2009.05.014.

Al-deen, S., Ranzi, G., & Vrcelj, Z. “Full-scale long-term and ultimate experiments of simply-supported composite beams with steel deck”. Journal of Constructional Steel Research, 67(10), 1658–1676. 2011.

https://doi.org/10.1016/j.jcsr.2011.04.010.

Ghorashi, M. “Linear Static Analysis of Composite Beams”. Statics and Rotational Dynamics of Composite Beams, 49–66. 2016.

https://doi.org/10.1007/978-3-319-14959-2_3.

Zhao, H., & Yuan, Y. “Experimental studies on composite beams with high-strength steel and concrete”. Steel & Composite Structures, 10(5), 373–383. 2010.

https://doi.org/10.12989/scs.2010.10.5.373

Giussani, F., & Mola, F. “Thin-walled composite steel-concrete beams subjected to skew bending and torsion”. Steel & Composite Structures, 9(3), 275–301. 2009.

https://doi.org/10.12989/scs.2009.9.3.275.

Lowe, D., Roy, K., Das, R., Clifton, C. G., & Lim, J. B. P. “Full scale experiments on splitting behaviour of concrete slabs in steel concrete composite beams with shear stud connection”. Structures, 23, 126–138. 2020.

https://doi.org/10.1016/j.istruc.2019.10.008.

Hou, Z., Xia, H., & Zhang, Y. "Dynamic analysis and shear connector damage identification of steel-concrete composite beams. Steel &amp"; Composite Structures, 13(4), 327–341. 2012.

https://doi.org/10.12989/scs.2012.13.4.327

Hossain, N. B., & Stewart, M. G. “Serviceability Reliability and Expected Costs of RC Beams Designed to Serviceability Specifications of AS3600”. Australian Journal of Structural Engineering, 4(1), 17–27.2002.

https://doi.org/10.1080/13287982.2002.11464904.

Quan, Q., & Gengwei, Z. “Calibration of reliability index of RC beams for serviceability limit state of maximum crack width”. Reliability Engineering & System Safety, 75(3), 359–366. 2002.

https://doi.org/10.1016/s0951-8320(01)00133-8.

Visintin, P., Oehlers, D. J., Muhamad, R., & Wu, C. “Partial-interaction short term serviceability deflection of RC beams”. Engineering Structures, 56, 993–1006. 2013.

https://doi.org/10.1016/j.engstruct.2013.06.021

Subedi, N. K., & Baglin, P. S. “The serviceability criteria for encased-plate concrete beams”. Engineering Structures, 27(11), 1633–1641. 2005.

https://doi.org/10.1016/j.engstruct.2005.05.010.

Rahmatian, A., Bagchi, A., & Nokken, M. “Serviceability and Structural Behavior of FRP-RC Beams under Different Weathering Conditions and Fatigue”. Applied Mechanics and Materials, 704, 447–450. 2014.

https://doi.org/10.4028/www.scientific.net/amm.704.447.

Oehlers, D. J., Muhamad, R., & Mohamed Ali, M. S. “Serviceability flexural ductility of FRP RC beams: A discrete rotation approach”. Construction and Building Materials, 49, 974–984. 2013.

https://doi.org/10.1016/j.conbuildmat.2012.10.001.

Atutis, E., Atutis, M., Budvytis, M., & Valivonis, J. “Serviceability and Shear Response of RC Beams Prestressed with a Various Types of FRP Bars”. Procedia Engineering, 172, 60–67. 2017.

https://doi.org/10.1016/j.proeng.2017.02.017[17] Li, J., Huo, Q., Li, X., Kong, X., & Wu, W. “Dynamic stiffness analysis of steel-concrete composite beams”. Steel and Composite Structures, 16(6), 577–593. 2014.

https://doi.org/10.12989/scs.2014.16.6.577.

Fragiacomo, M., Amadio, C., & Macorini, L. “Influence of viscous phenomena on steel-concrete composite beams with normal or high performance slab”. Steel and Composite Structures, 2(2), 85–98. 2002.

https://doi.org/10.12989/scs.2002.2.2.085.

Lezgy-Nazargah, M., & Kafi, L. “Analysis of composite steel-concrete beams using a refined high-order beam theory”. Steel and Composite Structures, 18(6), 1353–1368. 2015.

https://doi.org/10.12989/scs.2015.18.6.1353.

Li, J., Huo, Q., Li, X., Kong, X., & Wu, W. “Dynamic stiffness analysis of steel-concrete composite beams”. Steel and Composite Structures, 16(6), 577–593. 2014.

https://doi.org/10.12989/scs.2014.16.6.577.

Lezgy-Nazargah, M. “An isogeometric approach for the analysis of composite steel–concrete beams”. Thin-Walled Structures, 84, 406–415. 2014.

https://doi.org/10.1016/j.tws.2014.07.014.

Valsa Ipe, T., Sharada Bai, H., Manjula Vani, K., & Zafar Iqbal, M. M. “Flexural behavior of cold-formed steel concrete composite beams”. Steel & Composite Structures, 14(2), 105–120. 2013. https://doi.org/10.12989/scs.2013.14.2.105.

Saleh, S., & Fareed H. AlMosawi, F. H. A. “BEHAVIOR OF STEEL-NORMAL AND HIGH STRENGTH CONCRETE COMPOSITE BEAMS WITH PARTIAL SHEAR INTERACTIONBEHAVIOR OF STEEL-NORMAL AND HIGH STRENGTH CONCRETE COMPOSITE BEAMS WITH PARTIAL SHEAR INTERACTION. Kufa Journal of Engineering, 9(1), 175–190. 2018. https://doi.org/10.30572/2018/kje/090112.

Zhou, W., Li, S., Huang, Z., & Jiang, L. “Distortional buckling of I-steel concrete composite beams in negative moment area”. Steel and Composite Structures, 20(1), 57–70. 2016.

https://doi.org/10.12989/scs.2016.20.1.057.

Shamass, R., & Cashell, K. A. “Analysis of stainless steel-concrete composite beams”. Journal of Constructional Steel Research, 152, 132–142.2019. https://doi.org/10.1016/j.jcsr.2018.05.032.

Xue, W., Yang, F., & Li, L. “Experiment research on seismic performance of prestressed steel reinforced high performance concrete beams”. Steel & Composite Structures, 9(2), 159–172. 2009.

https://doi.org/10.12989/scs.2009.9.2.159.

Sohel, K. M. A., Richard Liew, J. Y., Alwis, W. A. M., & Paramasivam, P. “Experimental investigation of low-velocity impact characteristics of steel-concrete-steel sandwich beams”. Steel and Composite Structures, 3(4), 289–306. 2003.

https://doi.org/10.12989/scs.2003.3.4.289

Al-Deen S.,Ranzi G., Zona A., and Vrcelj Z. “Long-Term and Ultimate Experiments on Composite Steel Concrete Beams Designed with Partial Shear Connection”. Steel & Composite Structures, 2010.

https://doi.org/10.3850/978-981-08-6218-3_cc-th001.

Taplin, G., & Grundy, P. “Steel-Concrete Composite Beams under Repeated Load”. Composite Construction in Steel and Concrete IV. 2002.

https://doi.org/10.1061/40616(281)4.

Seracino, R. “Partial-Interaction Fatigue Assessment of Continuous Composite Steel-Concrete Bridge Beams”. Composite Construction in Steel and Concrete V. 2006.

https://doi.org/10.1061/40826(186)10.

Bradford, M. “Numerical Modelling of Shear Connection in Steel- Concrete Composite Beams”. Steel & Composite Structures 2010.

https://doi.org/10.3850/978-981-08-6218-3_key-2.

Ban, H., & Bradford, M. A. “Flexural Strength of High-Strength Steel-Concrete Composite Beams with Varying Steel Grades”. Composite Construction in Steel and Concrete VII 2016.

https://doi.org/10.1061/9780784479735.010.

Fabbrocino, G., Manfredi, G., & Cosenza, E. “Non-Linear Behaviour of Continuous Steel-Concrete Composite Beams”. Composite Construction in Steel and Concrete IV. 2002.

https://doi.org/10.1061/40616(281)21.

Lam, D., Dai, X., & Saveri, E. Behaviour of Demountable Shear Connectors in Steel-Concrete Composite Beams. Composite Construction in Steel and Concrete VII 2016.

https://doi.org/10.1061/9780784479735.047.

Studnicka, J., Machacek, J., Krpata, A., & Svitakova, M. “Perforated Shear Connector for Composite Steel and Concrete Beams”. Composite Construction in Steel and Concrete IV. 2002.

https://doi.org/10.1061/40616(281)32.

Zhao, B., & Aribert, J.-M. “Simple Calculation Method of Fire Resistance of Continuous Composite Steel and Concrete Beams”. Composite Construction in Steel and Concrete IV.2002.

https://doi.org/10.1061/40616(281)68.

Cashell, K. A., & Shamass, R. “Bending Moment Capacity of Stainless Steel-Concrete Composite Beams”. Proceedings 12th International Conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018.

https://doi.org/10.4995/asccs2018.2018.6969.

Mirza, O., & Uy, B. “Effect of Strain Profiles on the Behavior of Shear Connectors for Composite Steel-Concrete Beams”. Composite Construction in Steel and Concrete VI 2011.

https://doi.org/10.1061/41142(396)14.

Karmazínová, M., & Melcher, J. Resistance of Steel-Concrete Composite Beams with Glass-Fibre-Reinforced Concrete Slab. Proceedings of the 10th International Conference on Advances in Steel Concrete Composite and Hybrid Structures 2012.

https://doi.org/10.3850/978-981-07-2615-7_233.

Arie, F., & Somja, H. “Strut-and-tie model for the support of steel beams crossing concrete beams”. Proceedings 12th International Conference on Advances in Steel-Concrete Composite Structures - ASCCS .2018.

https://doi.org/10.4995/asccs2018.2018.7018.

Lindner, J., & Budassis, N. “Lateral Torsional Buckling of Partially Encased Composite Beams without Concrete Slab”. Composite Construction in Steel and Concrete IV .2002.

https://doi.org/10.1061/40616(281)11.

Henderson, I. E. J., Uy, B., Zhu, X. Q., & Mirza, O. “Environmental Factors Affecting the Dynamic Response of Composite Steel-Concrete Beams”. Composite Construction in Steel and Concrete VII 2016.

https://doi.org/10.1061/9780784479735.014

Wolperding, G. “Large Span Composite Beams with Integrated Dynamic Absorbers”. Composite Construction in Steel and Concrete IV .2002.

https://doi.org/10.1061/40616(281)79.

Hicks, S., Lawson, R. M., & Lam, D. “Design Considerations for Composite Beams Using Precast Concrete Slabs”. Composite Construction in Steel and Concrete V. 2006.

https://doi.org/10.1061/40826(186)19.

Grages, H., & Lange, J.”Deflection of Steel Concrete Composite Beams in Real Structures as Basis for the Calculation of the Serviceability of Buildings”. Composite Construction in Steel and Concrete V. 2006.

https://doi.org/10.1061/40826(186)29.

Vasdravellis, G., & Uy, B. “Experimental Investigation on the Moment - Shear Interaction in Steel-Concrete Composite Beams. Proceedings of the 10th International Conference on Advances in Steel Concrete Composite and Hybrid Structures. 2012.

https://doi.org/10.3850/978-981-07-2615-7_165.

Hicks, S., Lawson, R. M., & Lam, D. “Design Considerations for Composite Beams Using Precast Concrete Slabs”. Composite Construction in Steel and Concrete V. 2006.

https://doi.org/10.1061/40826(186)19.

Diedricks, A. A., Uy, B., Bradford, M. A., & Oehlers, D. J. “Mixed Analysis Approach for Semi-Continuous Steel-Concrete Composite Beams under Uniform Loading. Composite Construction in Steel and Concrete IV. 2002.

https://doi.org/10.1061/40616(281)20.

Cedeno, G. A., Varma, A. H., & Gore, J. “Predicting the Standard Fire Behavior of Composite Steel Beams”. Composite Construction in Steel and Concrete VI. 2011.

https://doi.org/10.1061/41142(396)53.

Iqbal, N., Pavlovic, M., Veljkovic, M., Heistermann, T., Lopes, F., Santiago, A., & da Silva, L. S.” Numerical Investigation of the Behaviour of Steel Beams in Steel-Concrete Composite Frames”. Composite Construction in Steel and Concrete VII. 2016. https://doi.org/10.1061/9780784479735.016.

Gardner, L., Kucukler, M., & Macorini, L. “Deformation-Based Design of Composite Beams”. Composite Construction in Steel and Concrete VII. 2016.

https://doi.org/10.1061/9780784479735.011.

Wijesiri Pathirana, I. S., Uy, B., Mirza, O., & Zhu, X. Q. “Numerical Study on the Behaviour of Composite Steel-Concrete Beams Utilising Innovative Blind Bolts”. Composite Construction in Steel and Concrete VII. 2016.

https://doi.org/10.1061/9780784479735.051.

Gizejowski, M. A., & Salah, W. A. Numerical Modeling of Composite Castellated Beams. Composite Construction in Steel and Concrete VI. 2011.

https://doi.org/10.1061/41142(396)45.

Crisinel, M., & Guscetti, G.”Design and Testing of Two Composite Underspanned Beams”. Composite Construction in Steel and Concrete VI. 2011.

https://doi.org/10.1061/41142(396)18.

Singh, B., Tan, E. L., Pan, Z., Mirza, O., & Boncato, J. “Experimental study of Steel-Concrete Composite Beams comprised of Fly ash based Geopolymer concrete”. Proceedings 12th International Conference on Advances in Steel-Concrete Composite Structures – ASCCS. 2018.

https://doi.org/10.4995/asccs2018.2018.6988.

Kemp, A. R., & Nethercot, D. A. “Satisfying Ductility Criteria in Continuous Composite Beams”. Composite Construction in Steel and Concrete IV. 2002. https://doi.org/10.1061/40616(281)9.

Qureshi, J., Lam, D., & Ye, J. “Effect of shear connector spacing and layout on the shear connector capacity in composite beams”. Journal of Constructional Steel Research, 67(4), 706–719. 2011.

https://doi.org/10.1016/j.jcsr.2010.11.009.

Shariati, M., Ramli Sulong, N. H., Shariati, A., & Khanouki, M. A. “Behavior of V-shaped angle shear connectors: experimental and parametric study”. Materials and Structures, 49(9), 3909–3926. 2015.

https://doi.org/10.1617/s11527-015-0762-8.

Prakash, A., Anandavalli, N., K. Madheswaran, C., & Lakshmanan, N. “Modified Push-out Tests for Determining Shear Strength and Stiffness of HSS Stud Connector-Experimental Study”. International Journal of Composite Materials, 2(3), 22–31. 2012.

https://doi.org/10.5923/j.cmaterials.20120203.02.

Ataei, A., Bradford, M. A., & Liu, X. “Experimental study of composite beams having a precast geopolymer concrete slab and deconstructable bolted shear connectors”. Engineering Structures, 114, 1–13. 2016.

https://doi.org/10.1016/j.engstruct.2015.10.041.

Liu, X., Bradford, M. A., & Ataei, A. “Flexural performance of innovative sustainable composite steel-concrete beams”. Engineering Structures, 130, 282–296. 2017.

https://doi.org/10.1016/j.engstruct.2016.10.009.

Sheehan, T., Dai, X., Yang, J., Zhou, K., & Lam, D. “Flexural behaviour of composite slim floor beams”. Structures, 21, 22–32. 2019.

https://doi.org/10.1016/j.istruc.2019.06.021.

Liu, B., Liu, Y., Jiang, L., & Wang, K. Flexural behavior of concrete-filled rectangular steel tubular composite truss beams in the negative moment region. Engineering Structures, 216, 110738. 2020.

https://doi.org/10.1016/j.engstruct.2020.110738.

Zhang, S., Jia, Y., & Ding, Y. “Study on the Flexural Behavior of Steel-Concrete Composite Beams Based on the Shear Performance of Headed Stud Connectors”. Buildings, 12(7), 961. 2022.

https://doi.org/10.3390/buildings12070961