A numerical modelling using ADM1 model in the co-anaerobic digestion of food waste with varying fat fractions to generate biogas
Main Article Content
Abstract
The impact of different fat contents and different degrees of hydrolysis on the anaerobic digestion process and the production of biogas is the subject of this paper and the evaluation is conducted with the aid of the ADM1 model. Anaerobic digestion is one of the most important steps of the biogas production from organic wastes and it contains mainly methane (CH₄) and carbon dioxide (CO₂). The study shows clearly that each concentration of fat improves methane production with 15% fat concentration giving the highest output at a rate of 0.75 m³/kg at day 20 as compared to the 0.10 m³/kg from 0% fat concentrations. Also, the extent of hydrolysis profoundly predicts the degradation of the complex organic material; the greatest hydrolysis rate of 0.25h⁻¹ gave methane of 0.70 m³/kg, which is about 75% higher than lesser rates. The existing study also shows that there was a direct relationship between the density of organic acids, hydrogen and CO₂ with the degree of fat content and rates of hydrolysis. Hence the results presented in this paper underscore the significance of defining fat and its hydrolyses in relation to the biogas production so as to improve the efficiency and stability of the anaerobic digestion process as the complex organic matters diminish. What this research offers is knowledge indispensable to enhancing the efficiency of energy extraction from organic waste, thereby enriching the contemporary discourse on waste management.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Licensed under a CC-BY license: https://creativecommons.org/licenses/by-nc-sa/4.0/
How to Cite
References
Dadgarian Shoushtari, A. (2023). Modeling and Investigating the Impact of Fermentation on the Anaerobic Digestion of Waste Sludges. Master of Engineering, Toronto Metropolitan University.
Wang, Y. (2018). Study on Methanation of CO₂ and CO from Blast Furnace Gas by Anaerobic Fermentation under Mesophilic Conditions. University of Tsukuba, Graduate School of Life Environmental Sciences.
DOI: https://tsukuba.repo.nii.ac.jp/record/48242/files/DA08841.pdf
Ferreira, F. M. da S. (2009). Digestão anaeróbia por via seca, como alternativa ao actual destino agrícola, das lamas desidratadas de ETAR's – possibilidade de extensão a vários tipos de resíduos com elevado teor de matéria orgânica. Mestrado Integrado em Engenharia Química, Faculdade de Engenharia da Universidade do Porto.
DOI: https://repositorio-aberto.up.pt/handle/10216/59489
Mossissa, A. T. (2022). Development of a Techno-Economic Analysis Tool for Anaerobic Digestion in Smallholder Farming Systems in the Context of the Water-Energy-Food Nexus. Doctoral Dissertation, Stellenbosch University.
Postawa, K., Szczygieł, J., Wrzesińska-Jędrusiak, E., Klimek, K., & Kuła _zyński, M. (2021). The pump-mixed anaerobic digestion of pig slurry: New technology and mathematical modeling. Waste Management, 123, 111–119.
DOI: 10.1016/j.wasman.2021.01.016.
Yang, W., Young, S., Munoz, A., & Palmarin, M. J. (2019). Dynamic modeling of a full-scale anaerobic mesophilic digester start-up process for the treatment of primary sludge. Journal of Environmental Chemical Engineering, 7(3), 103091.
DOI: 10.1016/j.jece.2019.103091
Sillero, L., Solera, R., & Pérez, M. (2023). Thermophilic-mesophilic temperature phase anaerobic co-digestion of sewage sludge, wine vinasse and poultry manure: Effect of hydraulic retention time on mesophilic-methanogenic stage. Chemical Engineering Journal, 451, 138478.
DOI: 10.1016/j.cej.2022.138478.
Chen, Y., Jiang, Q., Zhu, R., Shi, J., Chai, H., Li, L., Ai, H., Shi, D., He, Q., & Gu, L. (2020). Effects of green waste addition on waste activated sludge and fat, oil, and grease co-digestion in mesophilic batch digester. Environmental Technology.
DOI: 10.1080/09593330.2020.1717641.
Sillero, L., Solera, R., & Pérez, M. (2023). Thermophilic-mesophilic temperature phase anaerobic co-digestion of sewage sludge, wine vinasse and poultry manure: Effect of hydraulic retention time on mesophilic-methanogenic stage. Chemical Engineering Journal, 451, 138478.
DOI: 10.1016/j.cej.2022.138478.
Bellahkim, M. A., Gueraoui, K., Mzerd, A., Benbih, H., Men-La-Yakhaf, S., Zeggwagh, N. A., Taibi, M., & Debenest, G. (2021). Mathematical Modeling of Anaerobic Digestion of Maize Waste: A Case Study. International Journal on Engineering Applications, 9(3), 173–178.
DOI: 10.15866/irea.v9i3.19167.
Chaiyapong, P., & Chavalparit, O. (2016). Enhancement of biogas production potential from Acacia leaf waste using alkaline pre-treatment and co-digestion. Journal of Material Cycles and Waste Management.
DOI: 10.1007/s10163-016-0469-0.
Nava-Valente, N., Aguilar-Hernández, E., Alvarado-Lassman, A., & Méndez Contreras, J. M. (2022). Effect of acid pre-treatment on the anaerobic co-digestion of physicochemical sludge, poultry manure and sugarcane wastes (SCW) for biogas production.
DOI: 10.21203/rs.3.rs-1735864/v1.
Garrido-Baserba, M., Sedlak, D. L., Molinos-Senante, M., Barnosell, I., Schraa, O., Rosso, D., Verdaguer, M., & Poch, M. (2024). Using water and wastewater decentralization to enhance the resilience and sustainability of cities. Nature Water, 2(10), 953–974.
DOI: 10.1038/s44221-024-00303-9.
Garrido, G., Martinez, A., & de Souza, C. (2018). Use of organic waste biomass for the design of an electric station. Journal of Physics: Conference Series, 1126, 012012.
DOI: 10.1088/1742-6596/1126/1/012012
Khiewwijit, R. (2016). New wastewater treatment concepts towards energy saving and resource recovery. PhD Thesis, Wageningen University.
DOI: 10.18174/375547.
Garavito Realpe, N. (2023). Risk Factors of Food Loss and Waste, and Life Cycle Assessment of Waste Management Strategies in the Brazilian Leafy Vegetable Supply Chain. Master Thesis, University of Borås.
DOI: https://www.diva-portal.org/smash/get/diva2:1800691/FULLTEXT01.pdf
Jacobo Ubierna, E. R. (2019). Producción de biogás a partir de sustratos agropecuarios, mediante la co-digestión anaeróbica a nivel laboratorio, Lima 2019. Tesis para obtener el título profesional de Ingeniero Ambiental, Universidad César Vallejo.
DOI: https://hdl.handle.net/20.500.12692/143529
Ferreira, F. M. da S. (2009). Digestão anaeróbia por via seca, como alternativa ao actual destino agrícola, das lamas desidratadas de ETAR's – possibilidade de extensão a vários tipos de resíduos com elevado teor de matéria orgânica. Mestrado Integrado em Engenharia Química, Faculdade de Engenharia da Universidade do Porto.
DOI: https://repositorio-aberto.up.pt/handle/10216/59489
Sanchis Perucho, P. (2023). Filtración directa por membranas para potenciar la recuperación de recursos de las aguas residuales. Tesis Doctoral, Universitat de València.
DOI: https://hdl.handle.net/10550/86848
Wang, Y. (2018). Study on Methanation of CO₂ and CO from Blast Furnace Gas by Anaerobic Fermentation under Mesophilic Conditions. Graduate School of Life Environmental Sciences, University of Tsukuba.
DOI: https://tsukuba.repo.nii.ac.jp/record/48242/files/DA08841.pdf
Ferreira, F. M. da S. (2009). Digestão anaeróbia por via seca, como alternativa ao actual destino agrícola, das lamas desidratadas de ETAR's – possibilidade de extensão a vários tipos de resíduos com elevado teor de matéria orgânica. Mestrado Integrado em Engenharia Química, Faculdade de Engenharia da Universidade do Porto.
DOI: http://hdl.handle.net/10216/59489
Parker, W. J. (2005). Application of the ADM1 model to advanced anaerobic digestion. Bioresource Technology, 96(16), 1832–1842.
DOI: 10.1016/j.biortech.2005.01.022.
Galí, A., Benabdallah, T., Astals, S., & Mata-Alvarez, J. (2009). Modified version of ADM1 model for agro-waste application. Bioresource Technology, 100(11), 2783–2790.
DOI: 10.1016/j.biortech.2008.12.052.
Girault, R., Bridoux, G., Nauleau, F., Poullain, C., Buffet, J., Steyer, J.-P., Sadowski, A. G., & Béline, F. (2012). A waste characterisation procedure for ADM1 implementation based on degradation kinetics. Water Research, 46(13), 4099–4110.
DOI: 10.1016/j.watres.2012.04.028.
Mairet, F., Bernard, O., Ras, M., Lardon, L., & Steyer, J. (2011). Modeling anaerobic digestion of microalgae using ADM1. Bioresource Technology, 102(13), 6823–6829. https://doi.org/10.1016/j.biortech.2011.04.015