Phytoremediation of Oil Pollutants: Sustainable Soil and Water Techniques in Industrial Environments: A Review

Main Article Content

Zainab Yunis Abdulmuhsin
Muna Faeq Ali

Abstract

Oil contamination is one of the most significant environmental problems in recent times. By harnessing the ability of some plants to absorb and decompose petroleum hydrocarbons in water and soil, phytoremediation has become a low-cost, effective, and sustainable technique for removing these contaminants. This study investigated phytoremediation methods, the kinds of plants utilized, and the mechanisms between plants and contaminants, as well as an overview of research and development opportunities in this field and the practical and technical challenges facing it. It also assesses the potential of by means of local plants to remediate petroleum hydrocarbons present in wastewater and highlights successful field studies, especially in fields similar to Iraq. The study also provides many suggestions and treatments to improve this method and integrate it with other methods, such as biostimulation and bacterial support, to increase its effectiveness. The results support the idea that cleaning the petroleum refinery effluents in developing countries using plant treatment is a sustainable, practical, and inexpensive solution. By restoring the deteriorating areas and reducing dependence on expensive traditional technologies and risks, sustainable development goals can be achieved by adopting this technology. Phytoremediation can be considered a successful, effective, and inexpensive strategy for dealing with petroleum refinery wastewater pollution and restoring ecological balance through support for applied studies and research.

Article Details

How to Cite
[1]
Z. Y. Abdulmuhsin and M. F. . Ali, “Phytoremediation of Oil Pollutants: Sustainable Soil and Water Techniques in Industrial Environments: A Review”, Rafidain J. Eng. Sci., vol. 3, no. 2, pp. 444–457, Oct. 2025, doi: 10.61268/bmjx3r83.
Section
Review Articles

How to Cite

[1]
Z. Y. Abdulmuhsin and M. F. . Ali, “Phytoremediation of Oil Pollutants: Sustainable Soil and Water Techniques in Industrial Environments: A Review”, Rafidain J. Eng. Sci., vol. 3, no. 2, pp. 444–457, Oct. 2025, doi: 10.61268/bmjx3r83.

References

S.J. Mohammed, M.J. M-Ridha, K.M. Abed, A.A.M. Elgharbawy, Removal of levofloxacin and ciprofloxacin from aqueous solutions and an economic evaluation using the electrocoagulation process‏, Int J Environ Anal Chem 103 (2021) 3801–3819. https://doi.org/10.1080/03067319.2021.1913733.

S.J. Mohammed, M.J. Mohammed-Ridha, Optimization of Levofloxacin Removal From Aqueous Solution Using Electrocoagulation Process By Response Surface Methodology, Iraqi Journal of Agricultural Sciences 52 (2021) 204–217. https://doi.org/10.36103/IJAS.V52I1.1252.

Y. Agnovianto, L. Dewanti, S.R. Dwiningsih, Infertility Causing Factors & the Success Rate of in Vitro Fertilization (IVF) in One of Fertility Center of Surabaya City, Indonesia, Indian J Public Health Res Dev 11 (2020) 1978–1982.

A. Kuzhaeva, I. Berlinskii, Effects of oil pollution on the environment, International Multidisciplinary Scientific GeoConference: SGEM 18 (2018) 313–319.

A. Carpenter, Oil pollution in the North Sea: the impact of governance measures on oil pollution over several decades, Hydrobiologia 845 (2019) 109–127.

M.F. Ali, Q.A. Ali, M.J. M-Ridha, S.J. Mohammed, H.R. Bohan, Phytoremediation of tetracycline via the coontail Ceratophyllum demersum in antibiotics-contaminated water, Biocatal Agric Biotechnol 53 (2023) 102887.

J.W. Farrington, Oil pollution in the marine environment II: fates and effects of oil spills, Environment: Science and Policy for Sustainable Development 56 (2014) 16–31.

A.M. Al-Shammari, Environmental pollutions associated to conflicts in Iraq and related health problems, Rev Environ Health 31 (2016) 245–250.

M.J. M-Ridha, M.F. Ali, A.H. Taly, K.M. Abed, S.J. Mohammed, M.H. Muhamad, H.A. Hasan, Subsurface Flow Phytoremediation Using Barley Plants for Water Recovery from Kerosene-Contaminated Water: Effect of Kerosene Concentration and Removal Kinetics, Water (Switzerland) 14 (2022). https://doi.org/10.3390/w14050687.

S.J. Mohammed, M.J. MRidha, Q.A. Ali, K.M. Abed, S. Ahmadzadeh, Reliable treatment approach for levofloxacin and ciprofloxacin removal from aqueous medium: process modelling, kinetic and isotherm studies, Desalination Water Treat 307 (2023) 50–62. https://doi.org/10.5004/dwt.2023.29776.

S.A. Avlonitis, I. Poulios, D. Sotiriou, M. Pappas, K. Moutesidis, Simulated cotton dye effluents treatment and reuse by nanofiltration, Desalination 221 (2008) 259–267.

Q.A. Ali, M.F. Ali, S.J. Mohammed, M.J. M-Ridha, Utilising date palm fibres as a permeable reactive barrier to remove methylene blue dye from groundwater: a batch and continuous adsorption study, Environ Monit Assess 196 (2024) 1112.

Q.A. Ali, M.A.A. Shaban, S.J. Mohammed, M.J. M-Ridha, H.H. Abd-Almohi, K.M. Abed, M.Z.M. Salleh, H.A. Hasan, Date Palm Fibre Waste Exploitation for the Adsorption of Congo Red Dye via Batch and Continuous Modes, Journal of Ecological Engineering 24 (2023) 259–276. https://doi.org/10.12911/22998993/169176.

H.S. Alhares, M.A.A. Shaban, M.S. Salman, M.J. M-Ridha, S.J. Mohammed, K.M. Abed, M.A. Ibrahim, A.K. Al-Banaa, H.A. Hasan, Sunflower Husks Coated with Copper Oxide Nanoparticles for Reactive Blue 49 and Reactive Red 195 Removals: Adsorption Mechanisms, Thermodynamic, Kinetic, and Isotherm Studies, Water Air Soil Pollut 234 (2023). https://doi.org/10.1007/s11270-022-06033-6.

M.A. Ibrahim, M.A.A. Shaban, Y.R. Hasan, M.J. M-Ridha, H.A. Hussein, K.M. Abed, S.J. Mohammed, M.H. Muhamad, H.A. Hasan, Simultaneous Adsorption of Ternary Antibiotics (Levofloxacin, Meropenem, and Tetracycline) by SunFlower Husk Coated with Copper Oxide Nanoparticles, Journal of Ecological Engineering 23 (2022) 30–42.

H.S. Alhares, Q.A. Ali, M.A.A. Shaban, M.J. M-Ridha, H.R. Bohan, S.J. Mohammed, K.M. Abed, H.A. Hasan, Rice husk coated with copper oxide nanoparticles for 17α-ethinylestradiol removal from an aqueous solution: adsorption mechanisms and kinetics, Environ Monit Assess 195 (2023). https://doi.org/10.1007/s10661-023-11689-6.

J.C. Akan, F.I. Abdulrahman, G.A. Dimari, V.O. Ogugbuaja, Physicochemical determination of pollutants in wastewater and vegetable samples along the Jakara wastewater channelin Kano Metropolis, Kano State, Nigeria, European Journal of Scientific Research 23 (2008) 122–133.

H. Tarkhani, Guns, bombs, and pollution: unraveling the nexus between warfare, terrorism, and ecological devastation in Iraq, The Journal of Social Encounters 8 (2024) 29–48.

N.H.J. ALrikabi, Study of the sources of environmental pollution in lraq, Journal of Environmental Studies 14 (2014) 73–79.

M.S. Salman, H.S. Alhares, Q.A. Ali, M.J. M-Ridha, S.J. Mohammed, K.M. Abed, Cladophora Algae Modified with CuO Nanoparticles for Tetracycline Removal from Aqueous Solutions, Water Air Soil Pollut 233 (2022). https://doi.org/10.1007/s11270-022-05813-4.

C. Pathak, H.C. Mandalia, Petroleum industries: environmental pollution effects, management and treatment methods, International Journal of Separation for Environmental Sciences 1 (2012) 55.

A.H. Khalaf, Q.A. Ali, H.S. Alhares, H.H. Abd-Almohi, S.J. Mohammed, M.F. Murshed, Removal of malachite green dye from aqueous solutions by centrifugation using activated carbon from Ficus benjamina as an adsorbent, Int J Environ Anal Chem (2025) 1–30.

E.O. Nwaichi, M. Frac, P.A. Nwoha, P. Eragbor, Enhanced phytoremediation of crude oil-polluted soil by four plant species: effect of inorganic and organic bioaugumentation, Int J Phytoremediation 17 (2015) 1253–1261.

M.J. M-Ridha, S.L. Zeki, S.J. Mohammed, K.M. Abed, H.A. Hasan, Heavy Metals Removal from Simulated Wastewater using Horizontal Subsurface Constructed Wetland, Journal of Ecological Engineering 22 (2021) 243–250.

M.A. Hajabbasi, Importance of soil physical characteristics for petroleum hydrocarbons phytoremediation: A review, Afr J Environ Sci Tech 10 (2016) 394–405.

M.F. Ali, Q.A. Ali, M.J. M-Ridha, S.J. Mohammed, H.R. Bohan, Phytoremediation of tetracycline via the coontail Ceratophyllum demersum in antibiotics-contaminated water, Biocatal Agric Biotechnol 53 (2023). https://doi.org/10.1016/j.bcab.2023.102887.

Y. Shen, Y. Ji, C. Li, P. Luo, W. Wang, Y. Zhang, D. Nover, Effects of phytoremediation treatment on bacterial community structure and diversity in different petroleum-contaminated soils, Int J Environ Res Public Health 15 (2018) 2168.

H.-D. Liu, B. Gu, W.-F. Yuan, al -, K.H. D Tang, H.T. J Chai -, K. Tang, J. Angela, Phytoremediation of crude oil-contaminated soil with local plant species, IOP Conf Ser Mater Sci Eng 495 (2019) 012054. https://doi.org/10.1088/1757-899X/495/1/012054.

Z. Aksu, S. Tezer, Biosorption of reactive dyes on the green alga Chlorella vulgaris, Process Biochemistry 40 (2005) 1347–1361.

G.M. Aziz, S.I. Hussein, M.J. M-Ridha, S.J. Mohammed, K.M. Abed, M.H. Muhamad, H.A. Hasan, Activity of laccase enzyme extracted from Malva parviflora and its potential for degradation of reactive dyes in aqueous solution, Biocatal Agric Biotechnol 50 (2023). https://doi.org/10.1016/j.bcab.2023.102671.

K.L. Njoku, E.O. Ude, T.O. Jegede, O.Z. Adeyanju, P.O. Iheme, Characterization of hydrocarbon degrading microorganisms from Glycine max and Zea mays phytoremediated crude oil contaminated soil, Environ Anal Health Toxicol 37 (2022) e2022008.

M. Nie, Y. Wang, J. Yu, M. Xiao, L. Jiang, J. Yang, C. Fang, J. Chen, B. Li, Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil, PLoS One 6 (2011) e17961.

H.A. Moubasher, A.K. Hegazy, N.H. Mohamed, Y.M. Moustafa, H.F. Kabiel, A.A. Hamad, Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms, Int Biodeterior Biodegradation 98 (2015) 113–120.

H. Jiao, J. Luo, Y. Zhang, S. Xu, Z. Bai, Z. Huang, Bioremediation of petroleum hydrocarbon contaminated soil by Rhodobacter sphaeroides biofertilizer and plants., Pak J Pharm Sci 28 (2015).

I.A. Al-Baldawi, S.R. Yasin, S.S. Jasim, S.R.S. Abdullah, A.F. Almansoory, N. Ismail, Removal kinetics of organic carbon from palm oil mill effluent by native duckweeds and its potential as a biofertilizer, Journal of Water Process Engineering 53 (2023) 103852.

H. Ikeura, Y. Kawasaki, E. Kaimi, J. Nishiwaki, K. Noborio, M. Tamaki, Screening of plants for phytoremediation of oil-contaminated soil, Int J Phytoremediation 18 (2016) 460–466. https://doi.org/10.1080/15226514.2015.1115957;JOURNAL:JOURNAL:BIJP20;REQUESTEDJOURNAL:JOURNAL:BIJP20;WGROUP:STRING:PUBLICATION.

A. Fadhile Almansoory, H. Abu Hasan, M. Idris, S.R. Sheikh Abdullah, N. Anuar, Potential application of a biosurfactant in phytoremediation technology for treatment of gasoline-contaminated soil, Ecol Eng 84 (2015) 113–120. https://doi.org/10.1016/J.ECOLENG.2015.08.001.

A.H.M.J. Al-Obaidy, R.H. Al-Anbari, S.M. Hassan, Phytoremediation of soil polluted with Iraqi crude oil by using of cotton plant, Mesopotamia Environmental Journal (Mesop. Environ. j) ISSN: 2410-2598 3 (2016) 10–16.

A.A. Elijah, A review of the petroleum hydrocarbons contamination of soil, water and air and the available remediation techniques, taking into consideration the sustainable development goals, Earthline Journal of Chemical Sciences 7 (2022) 97–113.

E.O. Nwaichi, M. Frac, P.A. Nwoha, P. Eragbor, Enhanced Phytoremediation of Crude Oil-Polluted Soil by Four Plant Species: Effect of Inorganic and Organic Bioaugumentation, Int J Phytoremediation 17 (2015) 1253–1261. https://doi.org/10.1080/15226514.2015.1058324.

R. Shirdam, A.D. Zand, G.N. Bidhendi, N. Mehrdadi, Phytoremediation of hydrocarbon-contaminated soils with emphasis on the effect of petroleum hydrocarbons on the growth of plant species, Phytoprotection 89 (2008) 21–29. https://doi.org/10.7202/000379AR.

S. Yavari, A. Malakahmad, N.B. Sapari, A Review on Phytoremediation of Crude Oil Spills, Water Air Soil Pollut 226 (2015) 1–18. https://doi.org/10.1007/S11270-015-2550-Z/METRICS.

Z. Janbazi, F. Zarinkamar, S. Mohsenzadeh, Exploring the phytoremediation capacity of Portulaca oleracea naphthalene aromatic hydrocarbon contaminants: a physiological and biochemical study, Environmental Science and Pollution Research 31 (2024) 56079–56090. https://doi.org/10.1007/S11356-024-34909-Z/METRICS.

P.M. White, D.C. Wolf, G.J. Thoma, C.M. Reynolds, Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil, Water Air Soil Pollut 169 (2006) 207–220. https://doi.org/10.1007/S11270-006-2194-0/METRICS.

R. Meištininkas, I. Vaškevičienė, A. Dikšaitytė, N. Pedišius, J. Žaltauskaitė, Potential of Eight Species of Legumes for Heavy Fuel Oil-Contaminated Soil Phytoremediation, Sustainability 2023, Vol. 15, Page 4281 15 (2023) 4281. https://doi.org/10.3390/SU15054281.

P. Chevalier, D. Proulx, P. Lessard, W.F. Vincent, J. De La Noüe, Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment, J Appl Phycol 12 (2000) 105–112. https://doi.org/10.1023/A:1008168128654/METRICS.

S.P. Chu, The Influence of the Mineral Composition of the Medium on the Growth of Planktonic Algae: Part I. Methods and Culture Media, J Ecol 30 (1942) 284. https://doi.org/10.2307/2256574.

A. Klimchuk, R. MacDonald, W. Ferris, Performance Analysis of Engineered Liner Systems Used to Store Saline Fluids in the Canadian Oil and Gas Industry: Physical and Environmental Influences, (2016).

A.P.H. Association, Standard methods for the examination of water and wastewater, American public health association., 1926.

A. Hamidi, A.H. Karimi, Effect of Phytoremediation on Compression Characteristics of Silty Clayey Sand Contaminated with Crude Oil, International Journal of Civil Engineering 19 (2021) 973–995. https://doi.org/10.1007/S40999-021-00609-9/METRICS.

A. Hamidi, A.H. Karimi, Effect of Phytoremediation on Compression Characteristics of Silty Clayey Sand Contaminated with Crude Oil, International Journal of Civil Engineering 19 (2021) 973–995. https://doi.org/10.1007/S40999-021-00609-9/METRICS.

P. Jarujareet, K. Nakkanong, E. Luepromchai, O. Suttinun, Bioaugmentation coupled with phytoremediation for the removal of phenolic compounds and color from treated palm oil mill effluent, Environmental Science and Pollution Research 26 (2019) 32065–32079. https://doi.org/10.1007/S11356-019-06332-2/METRICS.

M.M. Nuhu, E.R. Rene, A. Ishaq, Remediation of crude oil spill sites in Nigeria: Problems, technologies, and future prospects, Environmental Quality Management 31 (2022) 165–175. https://doi.org/10.1002/tqem.21793.

L. Panchenko, A. Muratova, E. Dubrovskaya, S. Golubev, O. Turkovskaya, Natural and Technical Phytoremediation of Oil-Contaminated Soil, Life 2023, Vol. 13, Page 177 13 (2023) 177. https://doi.org/10.3390/LIFE13010177.

J.J. Germida, C.M. Frick, R.E. Farrell, Phytoremediation of oil-contaminated soils, Developments in Soil Science 28 (2002) 169–186. https://doi.org/10.1016/S0166-2481(02)80015-0.

M. Nie, Y. Wang, J. Yu, M. Xiao, L. Jiang, J. Yang, C. Fang, J. Chen, B. Li, Understanding Plant-Microbe Interactions for Phytoremediation of Petroleum-Polluted Soil, PLoS One 6 (2011) e17961. https://doi.org/10.1371/JOURNAL.PONE.0017961.

S.S. Radwan, H. Al-Awadhi, I.M. El-Nemr, Cropping as a Phytoremediation Practice for Oily Desert Soil with Reference to Crop Safety as Food, Int J Phytoremediation 2 (2000) 383–396. https://doi.org/10.1080/15226510008500046.

O.A.-A. research review, undefined 2008, Phytoplankton and nutrient dynamics of a tropical estuarine system, Imo River Estuary, Nigeria, Ajol.InfoOC AkomaAfrican Research Review, 2008•ajol.Info (n.d.). https://www.ajol.info/index.php/afrrev/article/view/41053 (accessed August 24, 2025).

J.J. Germida, C.M. Frick, R.E. Farrell, Phytoremediation of oil-contaminated soils, Developments in Soil Science 28 (2002) 169–186. https://doi.org/10.1016/S0166-2481(02)80015-0.

Z.S. Hussein, N. Hamido, A.K. Hegazy, M.A. El-Dessouky, N.H. Mohamed, G. Safwat, Phytoremediation of Crude Petroleum Oil Pollution: A Review, Egyptian Journal of Botany 62 (2022) 611–640. https://doi.org/10.21608/ejbo.2022.136551.1980.

Y. Xu, C. Dang, X.E. Cao, Y. Cao, J. Huang, Y. Xu, M. Shan, R. Liu, P. Li, G. Xu, M. Zhu, Artificial phytoremediation solar interface evaporator for efficient heavy metal salt separation and saline soil remediation, J Environ Chem Eng 12 (2024) 113114. https://doi.org/10.1016/J.JECE.2024.113114.

E.O. Nwaichi, M. Frac, P.A. Nwoha, P. Eragbor, Enhanced Phytoremediation of Crude Oil-Polluted Soil by Four Plant Species: Effect of Inorganic and Organic Bioaugumentation, Int J Phytoremediation 17 (2015) 1253–1261. https://doi.org/10.1080/15226514.2015.1058324.

A.H. Karimi, A. Hamidi, Effect of Phytoremediation on Geotechnical Characteristics of Oil Contaminated Sands, Soil and Sediment Contamination: An International Journal 30 (2021) 943–963. https://doi.org/10.1080/15320383.2021.1900065.

K. Wojtowicz, T. Steliga, P. Kapusta, J. Brzeszcz, Oil-Contaminated Soil Remediation with Biodegradation by Autochthonous Microorganisms and Phytoremediation by Maize (Zea mays), Molecules 28 (2023) 6104. https://doi.org/10.3390/MOLECULES28166104/S1.

E.C. Rada, G. Andreottola, I.A. Istrate, P. Viotti, F. Conti, E.R. Magaril, Remediation of Soil Polluted by Organic Compounds Through Chemical Oxidation and Phytoremediation Combined with DCT, International Journal of Environmental Research and Public Health 2019, Vol. 16, Page 3179 16 (2019) 3179. https://doi.org/10.3390/IJERPH16173179.

P. Vervaeke, S. Luyssaert, J. Mertens, E. Meers, F.M.G. Tack, N. Lust, Phytoremediation prospects of willow stands on contaminated sediment: a field trial, Environmental Pollution 126 (2003) 275–282. https://doi.org/10.1016/S0269-7491(03)00189-1.

A. Baban, A. Yediler, N. Ciliz, A. Kettrup, Biodegradability oriented treatability studies on high strength segregated wastewater of a woolen textile dyeing plant, Chemosphere 57 (2004) 731–738. https://doi.org/10.1016/J.CHEMOSPHERE.2004.05.038.

M.J. M-Ridha, M.F. Ali, A.H. Taly, K.M. Abed, S.J. Mohammed, M.H. Muhamad, H.A. Hasan, Subsurface Flow Phytoremediation Using Barley Plants for Water Recovery from Kerosene-Contaminated Water: Effect of Kerosene Concentration and Removal Kinetics, Water (Switzerland) 14 (2022) 687. https://doi.org/10.3390/W14050687/S1.

S. Yavari, A. Malakahmad, N.B. Sapari, A Review on Phytoremediation of Crude Oil Spills, Water Air Soil Pollut 226 (2015) 1–18. https://doi.org/10.1007/S11270-015-2550-Z/METRICS.

B. Nemati, M.M. Baneshi, H. Akbari, R. Dehghani, G. Mostafaii, Phytoremediation of pollutants in oil-contaminated soils by Alhagi camelorum: evaluation and modeling, Sci Rep 14 (2024) 1–12. https://doi.org/10.1038/S41598-024-56214-Y;SUBJMETA=172,61,631,704;KWRD=BIOTECHNOLOGY,ENVIRONMENTAL+SCIENCES.

S. Trapp, U. Karlson, Aspects of phytoremediation of organic pollutants, J Soils Sediments 1 (2001) 37–43. https://doi.org/10.1007/BF02986468/METRICS.

A. Pathak, M.K. Gupta, M.S. Rabani, S. Tripathi, S. Pandey, C. Gupta, M. Shrivastav, Enzymatic approach for phytoremediation, Aquatic Contamination: Tolerance and Bioremediation (2023) 123–130. https://doi.org/10.1002/9781119989318.CH8;CTYPE:STRING:BOOK.

I.A. Allamin, M.I.E. Halmi, N.A. Yasid, S.A. Ahmad, S.R.S. Abdullah, Y. Shukor, Rhizodegradation of Petroleum Oily Sludge-contaminated Soil Using Cajanus cajan Increases the Diversity of Soil Microbial Community, Sci Rep 10 (2020) 1–11. https://doi.org/10.1038/S41598-020-60668-1;TECHMETA=45;SUBJMETA=158,168,61,631,704;KWRD=BIOTECHNOLOGY,ECOLOGY,ENVIRONMENTAL+BIOTECHNOLOGY.

M.A. Baghapour, S. Nasseri, B. Djahed, Evaluation of Shiraz wastewater treatment plant effluent quality for agricultural irrigation by Canadian Water Quality Index (CWQI), Iranian J Environ Health Sci Eng 10 (2013) 27.

Z.S. Hussein, N. Hamido, A.K. Hegazy, M.A. El-Dessouky, N.H. Mohamed, G. Safwat, Phytoremediation of Crude Petroleum Oil Pollution: A Review, Egyptian Journal of Botany 62 (2022) 611–640. https://doi.org/10.21608/ejbo.2022.136551.1980.

S. Yavari, A. Malakahmad, N.B. Sapari, A Review on Phytoremediation of Crude Oil Spills, Water Air Soil Pollut 226 (2015) 1–18. https://doi.org/10.1007/S11270-015-2550-Z/METRICS.

J. Bell, C.A. Buckley, Treatment of a textile dye in the anaerobic baffled reactor, Water Sa 29 (2003) 129–134.

J.R. Henry, An overview of the phytoremediation of lead and mercury, US Environmental Protection Agency, Office of Solid Waste and Emergency …, 2000.

S. Trapp, U. Karlson, Aspects of phytoremediation of organic pollutants, J Soils Sediments 1 (2001) 37–43.

R. Shirdam, A.D. Zand, G.N. Bidhendi, N. Mehrdadi, Phytoremediation of hydrocarbon-contaminated soils with emphasis on the effect of petroleum hydrocarbons on the growth of plant species, Phytoprotection 89 (2008) 21–29.

T. Sundaralingam, N. Gnanavelrajah, Phytoremediation potential of selected plants for Nitrate and Phosphorus from ground water, Int J Phytoremediation 16 (2014) 275–284.

G. Singh, S. Bhadange, F. Bhawna, P. Shewale, R. Dahiya, A. Aggarwal, F. Manju, S.K. Arya, Phytoremediation of radioactive elements, possibilities and challenges: special focus on agricultural aspects, Int J Phytoremediation 25 (2023) 1–8.

N.I. Glibovytska, K.B. Karavanovych, T.B. Kachala, Prospects of Phytoremediation and Phytoindication of Oil-Contaminated Soils with the Help of Energy Plants, Journal of Ecological Engineering Vol. 20 (2019) 147–154. https://doi.org/10.12911/22998993/109875.

S. Al-Ateeqi, L.I. Al-Musawi, V.K. Sharma, M. Abdullah, X. Ma, Plant communities and potential native phytoremediator species in petroleum hydrocarbon-polluted desert systems, Land Degrad Dev 33 (2022) 1745–1757. https://doi.org/10.1002/LDR.4193;CTYPE:STRING:JOURNAL.

M.M. Nuhu, E.R. Rene, A. Ishaq, Remediation of crude oil spill sites in Nigeria: Problems, technologies, and future prospects, Environmental Quality Management 31 (2022) 165–175. https://doi.org/10.1002/TQEM.21793;PAGE:STRING:ARTICLE/CHAPTER.

A. Bes-Pía, A. Iborra-Clar, J.A. Mendoza-Roca, M.I. Iborra-Clar, M.I. Alcaina-Miranda, Nanofiltration of biologically treated textile effluents using ozone as a pre-treatment, Desalination 167 (2004) 387–392.

S. Yavari, A. Malakahmad, N.B. Sapari, A Review on Phytoremediation of Crude Oil Spills, Water Air Soil Pollut 226 (2015) 1–18. https://doi.org/10.1007/S11270-015-2550-Z/METRICS.

P. Chevalier, D. Proulx, P. Lessard, W.F. Vincent, J. De la Noüe, Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment, J Appl Phycol 12 (2000) 105–112.

S.P. Chu, The influence of the mineral composition of the medium on the growth of planktonic algae: part I. Methods and culture media, J Ecol (1942) 284–325.

W.P. Cunningham, M.A. Cunningham, B.W. Saigo, Environmental science: A global concern, McGraw-Hill New York, 2001.