Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications

Main Article Content

Mohammed Mohammed
https://orcid.org/0009-0001-9028-6852
Tijjani Adam
https://orcid.org/0000-0002-1023-1780
Falah H. Ihmedee3
Aeshah M. Mohammed
Saleh A.K.AL_Essa
Bashir O. Betar
https://orcid.org/0000-0003-2569-4195

Abstract

Zinc oxide nanoparticles (ZnONPs), are becoming a more useful tool in a number of fields, including electronics, food packaging, optics, and most significantly, medicinal applications. These nanoparticles show a special capacity to target cancer cells specifically, dissolving into Zn2+ ions in an acidic environment. This leads to the generation of reactive oxygen species that specifically induce cytotoxic effects in malignant cells. Furthermore, ZnONPs work well as carriers to deliver certain anticancer medications straight into tumour cells. Growing interest in ZnONPs has prompted the creation of a variety of production methods, including chemical, physical, and environmentally benign biological approaches. This review explores the biomedical uses of ZnONPs and their production techniques, with an emphasis on the anticancer properties of the compounds. Detailed investigations into the mechanisms by which ZnONPs combat various cancers, influenced by their size, shape, and surface properties, are discussed. Additionally, their role in enhancing cancer treatment through the combined use of chemotherapy and photodynamic therapy, triggered by exposure to ultraviolet (UV) or near-infrared (NIR) light, is examined. The paper further explores the drug delivery capabilities of ZnONPs, including drug loading, stimulus-responsive controlled release, and therapeutic advantages. Finally, the future prospects of ZnONPs research and applications are considered, highlighting potential advancements and innovations.

Article Details

How to Cite
[1]
M. . Mohammed, T. Adam, F. . Ihmedee, A. . Mohammed, S. AL_Essa, and B. . Betar, “Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications”, Rafidain J. Eng. Sci., vol. 2, no. 2, pp. 185–202, Aug. 2024, doi: 10.61268/c40js505.
Section
Review Articles

How to Cite

[1]
M. . Mohammed, T. Adam, F. . Ihmedee, A. . Mohammed, S. AL_Essa, and B. . Betar, “Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications”, Rafidain J. Eng. Sci., vol. 2, no. 2, pp. 185–202, Aug. 2024, doi: 10.61268/c40js505.

References

Wiesmann, N., Kluenker, M., Demuth, P., Brenner, W., Tremel, W., & Brieger, J. (2019). Zinc overload mediated by zinc oxide nanoparticles as innovative anti-tumor agent. Journal of Trace Elements in Medicine and Biology, 51, 226-234.

Brohi, R. D., Wang, L., Talpur, H. S., Wu, D., Khan, F. A., Bhattarai, D., ... & Huo, L. J. (2017). Toxicity of nanoparticles on the reproductive system in animal models: a review. Frontiers in pharmacology, 8, 606.

Murthy, S., Effiong, P., & Fei, C. C. (2020). Metal oxide nanoparticles in biomedical applications. In Metal oxide powder technologies (pp. 233-251).

Mandal, A. K., Katuwal, S., Tettey, F., Gupta, A., Bhattarai, S., Jaisi, S., ... & Parajuli, N. (2022). Current research on zinc oxide nanoparticles: synthesis, characterization, and biomedical applications. Nanomaterials, 12(17), 3066.

Ehfaed, N. A. K., Bathmanathan, S., Adam, T., Mohammed, M., Mohammed, A. M., Dahham, O. S., ... & Noriman, N. Z. (2018, December). Amino-propyltriethoxysilane Modified Heavy Metal Sensor Based on Silicon Nanowire Arrays. In IOP Conference Series: Materials Science and Engineering (454, 1, 012080).

Mirzaei, H., & Darroudi, M. (2017). Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International, 43(1), 907-914.

Ehfaed, N. A. K., Adam, T., Mohammed, M., Dahham, O. S., Hashim, U., Noriman, N. Z., & Rabia, A. R. (2018, December). Design, Fabrication and Characterization of silicon Nanostructures for Lead (Pb+) ion detection. In IOP Conference Series: Materials Science and Engineering (454,1, 012181).

Mosbah, A. B., Adam, T., Mohammed, M., Dahham, O. S., Hashim, U., & Noriman, N. Z. (2018, December). Mercaptopropyltriethoxysilane (MPTES) Concentration Effect on Selectivity and Electrical Response of Nanostructure. In IOP Conference Series: Materials Science and Engineering (454, 1, 012184).

Adam, T., Basri, B., Dhahi, T. S., Mohammed, M., Hashim, U., Noriman, N. Z., & Dahham, O. S. (2017, September). Synthesis of zinc oxide thin films prepared by sol-gel for specific bioactivity. In AIP Conference Proceedings (1885, 1).

Perveen, R., Shujaat, S., Qureshi, Z., Nawaz, S., Khan, M. I., & Iqbal, M. (2020). Green versus sol-gel synthesis of ZnO nanoparticles and antimicrobial activity evaluation against panel of pathogens. Journal of Materials Research and Technology, 9(4), 7817-7827.

Shaat, S. K. K., Musleh, H., Zayed, H., Tamous, H., Issa, A., Shurrab, N., ... & AlDahoudi, N. (2019). Solution combustion-derived ZnO nanoparticles for photoanode of solar cells. Materials Science and Engineering: B, 241, 75-81.

Chandekar, K. V., Shkir, M., Khan, A., Al-Shehri, B. M., Hamdy, M. S., AlFaify, S., ... & Ghaithan, H. (2020). A facile one-pot flash combustion synthesis of La@ ZnO nanoparticles and their characterizations for optoelectronic and photocatalysis applications. Journal of Photochemistry and Photobiology A: Chemistry, 395, 112465.

Hajiashrafi, S., & Kazemi, N. M. (2019). Preparation and evaluation of ZnO nanoparticles by thermal decomposition of MOF-5. Heliyon, 5(9).

Little, D. J., Pfund, J. D., McLain, A. A., Sporie, J. A., Lantvit, S. M., & King, S. T. (2020). Synthesis of a zinc oxide/graphene hybrid material by the direct thermal decomposition of oxalate. Materials Research Express, 7(6), 065005.

Ba-Abbad, M. M., Takriff, M. S., Benamor, A., Nasser, M. S., Mahmoudi, E., & Mohammad, A. W. (2018). Synthesis and characterization of Sm 3+-doped ZnO nanoparticles via a sol–gel method and their photocatalytic application. Journal of Sol-Gel Science and Technology, 85, 178-190.

Ismail, A. M., Menazea, A. A., Kabary, H. A., El-Sherbiny, A. E., & Samy, A. (2019). The influence of calcination temperature on structural and antimicrobial characteristics of zinc oxide nanoparticles synthesized by Sol–Gel method. Journal of Molecular Structure, 1196, 332-337.

Agarwal, S., Rai, P., Gatell, E. N., Llobet, E., Güell, F., Kumar, M., & Awasthi, K. (2019). Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sensors and Actuators B: Chemical, 292, 24-31.

Yang, W., Yang, H., Ding, W., Zhang, B., Zhang, L., Wang, L., ... & Zhang, Q. (2016). High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method. Ultrasonics Sonochemistry, 33, 106-117.

Adam, R. E., Pozina, G., Willander, M., & Nur, O. (2018). Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH. Photonics and Nanostructures-Fundamentals and Applications, 32, 11-18.

Katiyar, A., Kumar, N., Shukla, R. K., & Srivastava, A. (2020). Influence of alkali hydroxides on synthesis, physico-chemical and photoluminescence properties of zinc oxide nanoparticles. Materials Today: Proceedings, 29, 885-889.

Saloga, P. E., & Thünemann, A. F. (2019). Microwave-assisted synthesis of ultrasmall zinc oxide nanoparticles. Langmuir, 35(38), 12469-12482.

Ahammed, K. R., Ashaduzzaman, M., Paul, S. C., Nath, M. R., Bhowmik, S., Saha, O., ... & Aka, T. D. (2020). Microwave assisted synthesis of zinc oxide (ZnO) nanoparticles in a noble approach: utilization for antibacterial and photocatalytic activity. SN Applied Sciences, 2, 1-14.

Khan, M. J., Ahmad, A., Khan, M. A., & Siddiqui, S. (2021). Zinc oxide nanoparticle induces apoptosis in human epidermoid carcinoma cells through reactive oxygen species and DNA degradation. Biological Trace Element Research, 199, 2172-2181.

Bhatia, S. N., Chen, X., Dobrovolskaia, M. A., & Lammers, T. (2022). Cancer nanomedicine. Nature Reviews Cancer, 22(10), 550-556.

Pandurangan, M., Enkhtaivan, G., & Kim, D. H. (2016). Anticancer studies of synthesized ZnO nanoparticles against human cervical carcinoma cells. Journal of Photochemistry and Photobiology B: Biology, 158, 206-211.

Manshian, B. B., Pokhrel, S., Himmelreich, U., Tämm, K., Sikk, L., Fernández, A., ... & Soenen, S. J. (2017). In Silico Design of Optimal Dissolution Kinetics of Fe‐Doped ZnO Nanoparticles Results in Cancer‐Specific Toxicity in a Preclinical Rodent Model. Advanced Healthcare Materials, 6(9), 1601379.

Wu, H., & Zhang, J. (2018). Chitosan-based zinc oxide nanoparticle for enhanced anticancer effect in cervical cancer: A physicochemical and biological perspective. Saudi Pharmaceutical Journal, 26(2), 205-210.

Gowdhami, B., Jaabir, M., Archunan, G., & Suganthy, N. (2019). Anticancer potential of zinc oxide nanoparticles against cervical carcinoma cells synthesized via biogenic route using aqueous extract of Gracilaria edulis. Materials Science and Engineering: C, 103, 109840.

Baskar, G., Chandhuru, J., Sheraz Fahad, K., Praveen, A. S., Chamundeeswari, M., & Muthukumar, T. (2015). Anticancer activity of fungal L-asparaginase conjugated with zinc oxide nanoparticles. Journal of Materials Science: Materials in Medicine, 26, 1-7.

Kc, B., Paudel, S. N., Rayamajhi, S., Karna, D., Adhikari, S., Shrestha, B. G., & Bisht, G. (2016). Enhanced preferential cytotoxicity through surface modification: synthesis, characterization and comparative in vitro evaluation of TritonX-100 modified and unmodified zinc oxide nanoparticles in human breast cancer cell (MDA-MB-231). Chemistry Central Journal, 10, 1-10.

Krishna, P. G., Ananthaswamy, P. P., Yadavalli, T., Mutta, N. B., Sannaiah, A., & Shivanna, Y. (2016). ZnO nanopellets have selective anticancer activity. Materials Science and Engineering: C, 62, 919-926.

Khorsandi, L., & Farasat, M. (2020). Zinc oxide nanoparticles enhance expression of maspin in human breast cancer cells. Environmental Science and Pollution Research, 27(30), 38300-38310.

Selvakumari, D., Deepa, R., Mahalakshmi, V., Subhashini, P., & Lakshminarayan, N. (2015). Anti cancer activity of ZnO nanoparticles on MCF7 (breast cancer cell) and A549 (lung cancer cell). ARPN J. Eng. Appl. Sci, 10(12), 5418-5421.

Wu, B., Wu, J., Liu, S., Shen, Z., Chen, L., Zhang, X. X., & Ren, H. Q. (2019). Combined effects of graphene oxide and zinc oxide nanoparticle on human A549 cells: bioavailability, toxicity and mechanisms. Environmental Science: Nano, 6(2), 635-645.

Priyadharshini, R. I., Prasannaraj, G., Geetha, N., & Venkatachalam, P. (2014). Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Applied biochemistry and biotechnology, 174, 2777-2790.

Rahimi Kalateh Shah Mohammad, G., Karimi, E., Oskoueian, E., & Homayouni‐Tabrizi, M. (2020). Anticancer properties of green‐synthesised zinc oxide nanoparticles using Hyssopus officinalis extract on prostate carcinoma cells and its effects on testicular damage and spermatogenesis in Balb/C mice. Andrologia, 52(1), e13450.

Ashokan, A. P., Paulpandi, M., Dinesh, D., Murugan, K., Vadivalagan, C., & Benelli, G. (2017). Toxicity on dengue mosquito vectors through Myristica fragrans-synthesized zinc oxide nanorods, and their cytotoxic effects on liver cancer cells (HepG2). Journal of Cluster Science, 28, 205-226.

Ezhuthupurakkal, P. B., Ariraman, S., Arumugam, S., Subramaniyan, N., Muthuvel, S. K., Kumpati, P., ... & Chinnasamy, T. (2018). Anticancer potential of ZnO nanoparticle-ferulic acid conjugate on Huh-7 and HepG2 cells and diethyl nitrosamine induced hepatocellular cancer on Wistar albino rat. Nanomedicine: Nanotechnology, Biology and Medicine, 14(2), 415-428.

Elje, E., Mariussen, E., Moriones, O. H., Bastús, N. G., Puntes, V., Kohl, Y., ... & Rundén-Pran, E. (2020). Hepato (geno) toxicity assessment of nanoparticles in a HepG2 liver spheroid model. Nanomaterials, 10(3), 545.

Namvar, F., Azizi, S., Rahman, H. S., Mohamad, R., Rasedee, A., Soltani, M., & Rahim, R. A. (2016). Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposite. OncoTargets and therapy, 4549-4559.

Majeed, S., Danish, M., Ismail, M. H. B., Ansari, M. T., & Ibrahim, M. N. M. (2019). Anticancer and apoptotic activity of biologically synthesized zinc oxide nanoparticles against human colon cancer HCT-116 cell line-in vitro study. Sustainable Chemistry and Pharmacy, 14, 100179.

Adam, T., Dhahi, T. S., Mohammed, M., Hashim, U., Noriman, N. Z., & Dahham, O. S. (2017, September). Drug carrier in cancer therapy: A simulation study based on magnetic carrier substances. In AIP Conference Proceedings (1885, 1).

Singh, T. A., Das, J., & Sil, P. C. (2020). Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Advances in colloid and interface science, 286, 102317.

Mosbah, A. B., Adam, T., Mohammed, M., Dahham, O. S., Hashim, U., & Noriman, N. Z. (2018, December). Arsenic ion Detection via Electron Chemical Reaction Mechanism Based on Interdigitated Electrode (IDE). In IOP Conference Series: Materials Science and Engineering ( 454, 1, 012183).

Muhammad, F., Guo, M., Qi, W., Sun, F., Wang, A., Guo, Y., & Zhu, G. (2011). pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. Journal of the American chemical society, 133(23), 8778-8781.

Chen, M., Hu, J., Bian, C., Zhu, C., Chen, C., Guo, Z., ... & Cao, X. (2020). pH-responsive and biodegradable ZnO-capped mesoporous silica composite nanoparticles for drug delivery. Materials, 13(18), 3950.