A Concise Review on Zeolite-Supported Catalysts for the Transesterification of Algal Lipids into Biodiesel
Main Article Content
Abstract
The fossil fuel stocks around the world were still declining, consequently, there has been a trend towards biofuels as an alternative energy source. Therefore, zeolite-based catalysts when used for efficient transesterification of algal lipids into biodiesel were conceder a critical area of research aimed at optimizing the conversion of algal lipids-a rich source of renewable energy-into biodiesel, a sustainable alternative to fossil fuels. Transesterification of vegetable oils and animal fats using homogeneous bases and acids to produce biodiesel is no longer regarded sustainable due to food compared to fuel competition, as well as environmental and economic challenges with feed stocks and catalyst systems. This review provided a comprehensive analysis of the potential of inedible oil like algae oil to produce biodiesel utilizing heterogeneous zeolite-based catalysts, utilizing heterogeneous zeolite-based catalysts. Zeolites are among the most diverse and significant types of heterogeneous catalysts and are suited for both laboratory and industrial applications. This review investigates the catalytic efficacy, recent advances, and future potential of zeolite-based catalysts in biodiesel production from algal lipids. Their unique properties, coupled with ongoing research to overcome existing challenges, underscore their potential role in fostering sustainable energy solutions and enhancing the efficiency of biodiesel synthesis.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Licensed under a CC-BY license: https://creativecommons.org/licenses/by-nc-sa/4.0/
How to Cite
References
Mousavi, S.M., Sheng, Y., Zhu, W. and Beroza, G.C., 2019. STanford EArthquake Dataset (STEAD): A global data set of seismic signals for AI. IEEE Access, 7, pp.179464-179476. https://doi.org/10.1109/ACCESS.2019.2947848.
Gebremariam, S.N. and Marchetti, J.M., 2017. Biodiesel production technologies. Aims Energy, 5(3), pp.425-457. https://doi.org/10.3934/energy.2017.3.425.
Pöttgen, R., Jüstel, T. and Strassert, C.A. eds., 2022. From Energy Storage to Photofunctional Materials. Walter de Gruyter GmbH & Co KG. ISBN-3110798891, 9783110798890.
El Bojaddayni, I., Küçük, M.E., El Ouardi, Y., Jilal, I., El Barkany, S., Moradi, K., Repo, E., Laatikainen, K. and Ouammou, A., 2023. A review on synthesis of zeolites from natural clay resources and waste ash: Recent approaches and progress. Minerals Engineering, 198, p.108086. https://doi.org/10.1016/j.mineng.2023.108086.
Fattahi, N., Triantafyllidis, K., Luque, R. and Ramazani, A., 2019. Zeolite-based catalysts: a valuable approach toward ester bond formation. Catalysts, 9(9), p.758. https://doi.org/10.3390/catal9090758.
Cruciani, G., 2006. Zeolites upon heating: Factors governing their thermal stability and structural changes. Journal of Physics and Chemistry of Solids, 67(9-10), pp.1973-1994. https://doi.org/10.1016/j.jpcs.2006.05.057.
Lee, D.W., Park, Y.M. and Lee, K.Y., 2009. Heterogeneous base catalysts for transesterification in biodiesel synthesis. Catalysis surveys from Asia, 13(2), pp.63-77. https://doi.org/10.1007/s10563-009-9068-6.
Barczyk, K., Mozgawa, W. and Król, M., 2014. Studies of anions sorption on natural zeolites. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, pp.876-882. https://doi.org/10.1016/j.saa.2014.06.065.
Shahbazi, A., Gonzalez-Olmos, R., Kopinke, F.D., Zarabadi-Poor, P. and Georgi, A., 2014. Natural and synthetic zeolites in adsorption/oxidation processes to remove surfactant molecules from water. Separation and Purification Technology, 127, pp.1-9. https://doi.org/10.1016/j.seppur.2014.02.021.
Elgharbawy, A.S., Sadik, W., Sadek, O.M. and Kasaby, M.A., 2021. A review on biodiesel feedstocks and production technologies. Journal of the Chilean Chemical Society, 66(1), pp.5098-5109. http://dx.doi.org/10.4067/S0717-97072021000105098.
Palčić, A. and Valtchev, V., 2020. Analysis and control of acid sites in zeolites. Applied Catalysis A: General, 606, p.117795. https://doi.org/10.1016/j.apcata.2020.117795.
Davis, M.E., 2002. Ordered porous materials for emerging applications. Nature, 417(6891), pp.813-821. https://doi.org/10.1038/nature00785.
Navrotsky, A., Hervig, R., Lyons, J., Seo, D.K., Shock, E. and Voskanyan, A., 2021. Cooperative formation of porous silica and peptides on the prebiotic Earth. Proceedings of the National Academy of Sciences, 118(2), p.e2021117118. https://doi.org/10.1073/pnas.2021117118.
Huber, G.W., Iborra, S. and Corma, A., 2006. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical reviews, 106(9), pp.4044-4098. https://doi.org/10.1021/cr068360d.
Luo, Z., Hu, C., Zhou, J. and Cen, K., 2006. Stability of mercury on three activated carbon sorbents. Fuel Processing Technology, 87(8), pp.679-685. https://doi.org/10.1016/j.fuproc.2005.10.005.
Shamzhy, M., Opanasenko, M., Concepción, P. and Martínez, A., 2019. New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 48(4), pp.1095-1149. https://doi.org/10.1039/C8CS00887F.
Bajpai, D. and Tyagi, V.K., 2006. Biodiesel: source, production, composition, properties and its benefits. Journal of OLEo science, 55(10), pp.487-502. https://doi.org/10.5650/jos.55.487.
Rizwanul Fattah, I.M., Ong, H.C., Mahlia, T.M.I., Mofijur, M., Silitonga, A.S., Rahman, S.A. and Ahmad, A., 2020. State of the art of catalysts for biodiesel production. Frontiers in Energy Research, 8, p.101. https://doi.org/10.3389/fenrg.2020.00101.
Sharma, A., Pareek, V. and Zhang, D., 2015. Biomass pyrolysis—A review of modelling, process parameters and catalytic studies. Renewable and sustainable energy reviews, 50, pp.1081-1096. https://doi.org/10.1016/j.rser.2015.04.193.
Ahankar, H., Ramazani, A., Fattahi, N., Ślepokura, K., Lis, T., Asiabi, P.A., Kinzhybalo, V., Hanifehpour, Y. and Joo, S.W., 2018. Tetramethylguanidine-functionalized silica-coated iron oxide magnetic nanoparticles catalyzed one-pot three-component synthesis of furanone derivatives. Journal of Chemical Sciences, 130(12), p.166. https://doi.org/10.1007/s12039-018-1572-7.
Malode, S.J., Prabhu, K.K., Mascarenhas, R.J., Shetti, N.P. and Aminabhavi, T.M., 2021. Recent advances and viability in biofuel production. Energy Conversion and Management: X, 10, p.100070. https://doi.org/10.1016/j.ecmx.2020.100070.
Khan, N., Sudhakar, K. and Mamat, R., 2021. Role of biofuels in energy transition, green economy and carbon neutrality. Sustainability, 13(22), p.12374. https://doi.org/10.3390/su132212374.
Baweja, P. and Sahoo, D., 2015. Classification of algae. In The algae world (pp. 31-55). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-7321-8_2.
Al-Kathem, Z.M.A. and Elkheralla, R.J.,2023. Production of unsaturated fatty acids (omega 3, 6, 7, 9) from algae Lyngbya and Oedogonium under the influence of nitrogen and phosphorus. omega, 3(6), pp.7-9. https://doi.org/10.47587/SA.2023.4216.
Demirbaş, A., 2008. Production of biodiesel from algae oils. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31(2), pp.163-168. https://doi.org/10.1080/15567030701521775.
Rhodes, C.J., 2009. Oil from algae; salvation from peak oil?. Science Progress, 92(1), pp.39-90. https://doi.org/10.3184/003685009X440281.
Melero, J.A., Iglesias, J. and Morales, G., 2009. Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green chemistry, 11(9), pp.1285-1308. https://doi.org/10.1039/B902086A.
Ramachandran, K., Suganya, T., Gandhi, N.N. and Renganathan, S., 2013. Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review. Renewable and sustainable energy reviews, 22, pp.410-418. https://doi.org/10.1016/j.rser.2013.01.057.
Galadima, A. and Muraza, O., 2014. Biodiesel production from algae by using heterogeneous catalysts: A critical review. Energy, 78, pp.72-83. https://doi.org/10.1016/j.energy.2014.06.018.
Sani, Y.M., Daud, W.M.A.W. and Aziz, A.A., 2013. Solid acid-catalyzed biodiesel production from microalgal oil—The dual advantage. Journal of Environmental Chemical Engineering, 1(3), pp.113-121. https://doi.org/10.1016/j.jece.2013.04.006.
Ghedini, E., Taghavi, S., Menegazzo, F. and Signoretto, M., 2021. A review on the efficient catalysts for algae transesterification to biodiesel. Sustainability, 13(18), p.10479. https://doi.org/10.3390/su131810479.
Lotero, E., Liu, Y., Lopez, D.E., Suwannakarn, K., Bruce, D.A. and Goodwin, J.G., 2005. Synthesis of biodiesel via acid catalysis. Industrial & engineering chemistry research, 44(14), pp.5353-5363. https://doi.org/10.1021/ie049157g.
Dimitrova, R., Gündüz, G. and Spassova, M., 2006. A comparative study on the structural and catalytic properties of zeolites type ZSM-5, mordenite, Beta and MCM-41. Journal of Molecular Catalysis A: Chemical, 243(1), pp.17-23. https://doi.org/10.1016/j.molcata.2005.08.015.
Carrero, A., Vicente, G., Rodríguez, R., Linares, M. and Del Peso, G.L., 2011. Hierarchical zeolites as catalysts for biodiesel production from Nannochloropsis microalga oil. Catalysis Today, 167(1), pp.148-153. https://doi.org/10.1016/j.cattod.2010.11.058.
Macario, A. and Giordano, G., 2013. Catalytic conversion of renewable sources for biodiesel production: A comparison between biocatalysts and inorganic catalysts. Catalysis letters, 143(2), pp.159-168. https://doi.org/10.1007/s10562-012-0949-3.
Kiss, A.A., Dimian, A.C. and Rothenberg, G., 2006. Solid acid catalysts for biodiesel Production–‐Towards sustainable energy. Advanced Synthesis & Catalysis, 348(1‐2), pp.75-81. https://doi.org/10.1002/adsc.200505160.
Qu, S., Chen, C., Guo, M., Jiang, W., Lu, J., Yi, W. and Ding, J., 2021. Microwave-assisted in-situ transesterification of Spirulina platensis to biodiesel using PEG/MgO/ZSM-5 magnetic catalyst. Journal of Cleaner Production, 311, p.127490. https://doi.org/10.1016/j.jclepro.2021.127490.
Rana, A., Alghazal, M.S., Alsaeedi, M.M., S. Bakdash, R., Basheer, C. and Al-Saadi, A.A., 2019. Preparation and characterization of biomass carbon–based solid acid catalysts for the esterification of marine algae for biodiesel production. BioEnergy Research, 12(2), pp.433-442. https://doi.org/10.1007/s12155-019-9965-0.
Sala, J.G., 2013. Ethyl octyl ether synthesis from 1-octanol and ethanol or diethyl carbonate on acidic ion-exchange resins. Universitat de Barcelona (Spain). https://www.proquest.com/openview/add0d1056bd335c9d90557fbdfe7f6af/1?pq-origsite=gscholar&cbl=2026366&diss=y.